1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Riemann Zeta Function</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../zetas.html" title="Zeta Functions">
<link rel="prev" href="../zetas.html" title="Zeta Functions">
<link rel="next" href="../expint.html" title="Exponential Integrals">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../zetas.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../zetas.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../expint.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.zetas.zeta"></a><a class="link" href="zeta.html" title="Riemann Zeta Function">Riemann Zeta Function</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.zetas.zeta.h0"></a>
<span class="phrase"><a name="math_toolkit.zetas.zeta.synopsis"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">zeta</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, and T otherwise.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<h5>
<a name="math_toolkit.zetas.zeta.h1"></a>
<span class="phrase"><a name="math_toolkit.zetas.zeta.description"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.description">Description</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
</pre>
<p>
Returns the <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html" target="_top">zeta
function</a> of z:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta1.svg"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/zeta1.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/zeta2.svg" align="middle"></span>
</p></blockquote></div>
<h5>
<a name="math_toolkit.zetas.zeta.h2"></a>
<span class="phrase"><a name="math_toolkit.zetas.zeta.accuracy"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.accuracy">Accuracy</a>
</h5>
<p>
The following table shows the peak errors (in units of epsilon) found on
various platforms with various floating point types, along with comparisons
to the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a> and
<a href="http://www.netlib.org/cephes/" target="_top">Cephes</a> libraries. Unless
otherwise specified any floating point type that is narrower than the one
shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
zero error</a>.
</p>
<div class="table">
<a name="math_toolkit.zetas.zeta.table_zeta"></a><p class="title"><b>Table 8.76. Error rates for zeta</b></p>
<div class="table-contents"><table class="table" summary="Error rates for zeta">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Zeta: Random values greater than 1
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.846ε (Mean = 0.0833ε)</span><br>
<br> (<span class="emphasis"><em><cmath>:</em></span> Max = 5.45ε (Mean = 1ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 8.69ε (Mean = 1.03ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.846ε (Mean = 0.0833ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.836ε (Mean = 0.093ε)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Zeta: Random values less than 1
</p>
</td>
<td>
<p>
<span class="blue">Max = 7.03ε (Mean = 2.93ε)</span><br> <br>
(<span class="emphasis"><em><cmath>:</em></span> Max = 538ε (Mean = 59.3ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 137ε (Mean = 13.8ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 70.1ε (Mean = 17.1ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 6.84ε (Mean = 3.12ε)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Zeta: Values close to and greater than 1
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.995ε (Mean = 0.5ε)</span><br> <br>
(<span class="emphasis"><em><cmath>:</em></span> Max = 1.9e+06ε (Mean = 5.11e+05ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 7.73ε (Mean = 4.07ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.995ε (Mean = 0.5ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.994ε (Mean = 0.421ε)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Zeta: Values close to and less than 1
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.998ε (Mean = 0.508ε)</span><br> <br>
(<span class="emphasis"><em><cmath>:</em></span> Max = 8.53e+06ε (Mean = 1.87e+06ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 0.991ε (Mean = 0.28ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.998ε (Mean = 0.508ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.991ε (Mean = 0.375ε)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Zeta: Integer arguments
</p>
</td>
<td>
<p>
<span class="blue">Max = 9ε (Mean = 3.06ε)</span><br> <br>
(<span class="emphasis"><em><cmath>:</em></span> Max = 70.3ε (Mean = 17.4ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 3.75ε (Mean = 1.1ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 28ε (Mean = 5.62ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 9ε (Mean = 3ε)</span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
The following error plot are based on an exhaustive search of the functions
domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/zeta__double.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/zeta__80_bit_long_double.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/zeta____float128.svg" align="middle"></span>
</p></blockquote></div>
<h5>
<a name="math_toolkit.zetas.zeta.h3"></a>
<span class="phrase"><a name="math_toolkit.zetas.zeta.testing"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.testing">Testing</a>
</h5>
<p>
The tests for these functions come in two parts: basic sanity checks use
spot values calculated using <a href="http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Zeta" target="_top">Mathworld's
online evaluator</a>, while accuracy checks use high-precision test values
calculated at 1000-bit precision with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a>
and this implementation. Note that the generic and type-specific versions
of these functions use differing implementations internally, so this gives
us reasonably independent test data. Using our test data to test other "known
good" implementations also provides an additional sanity check.
</p>
<h5>
<a name="math_toolkit.zetas.zeta.h4"></a>
<span class="phrase"><a name="math_toolkit.zetas.zeta.implementation"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.implementation">Implementation</a>
</h5>
<p>
All versions of these functions first use the usual reflection formulas to
make their arguments positive:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta3.svg"></span>
</p></blockquote></div>
<p>
The generic versions of these functions are implemented using the series:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta6.svg"></span>
</p></blockquote></div>
<p>
When the significand (mantissa) size is recognised (currently for 53, 64
and 113-bit reals, plus single-precision 24-bit handled via promotion to
double) then a series of rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
by JM</a> are used.
</p>
<p>
For 0 < z < 1 the approximating form is:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta4.svg"></span>
</p></blockquote></div>
<p>
For a rational approximation <span class="emphasis"><em>R(1-z)</em></span> and a constant
<span class="emphasis"><em>C</em></span>:
</p>
<p>
For 1 < z < 4 the approximating form is:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta5.svg"></span>
</p></blockquote></div>
<p>
For a rational approximation <span class="emphasis"><em>R(n-z)</em></span> and a constant
<span class="emphasis"><em>C</em></span> and integer <span class="emphasis"><em>n</em></span>:
</p>
<p>
For z > 4 the approximating form is:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic">ζ(z) = 1 + e<sup>R(z - n)</sup></span>
</p></blockquote></div>
<p>
For a rational approximation <span class="emphasis"><em>R(z-n)</em></span> and integer <span class="emphasis"><em>n</em></span>,
note that the accuracy required for <span class="emphasis"><em>R(z-n)</em></span> is not full
machine-precision, but an absolute error of: /ε<span class="emphasis"><em>R(0)</em></span>.
This saves us quite a few digits when dealing with large <span class="emphasis"><em>z</em></span>,
especially when ε is small.
</p>
<p>
Finally, there are some special cases for integer arguments, there are closed
forms for negative or even integers:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta7.svg"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta8.svg"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/zeta9.svg"></span>
</p></blockquote></div>
<p>
and for positive odd integers we simply cache pre-computed values as these
are of great benefit to some infinite series calculations.
</p>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../zetas.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../zetas.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../expint.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|