1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
[section:polynomials Polynomials]
[h4 Synopsis]
``
#include <boost/math/tools/polynomial.hpp>
``
namespace boost { namespace math {
namespace tools {
template <class T>
class polynomial
{
public:
// typedefs:
typedef typename std::vector<T>::value_type value_type;
typedef typename std::vector<T>::size_type size_type;
// construct:
polynomial(){}
template <class U>
polynomial(const U* data, unsigned order);
template <class Iterator>
polynomial(Iterator first, Iterator last);
template <class U>
explicit polynomial(const U& point,
typename std::enable_if<std::is_convertible<U, T> >::type* = nullptr);
template <class Range>
explicit polynomial(const Range& r,
typename std::enable_if<boost::math::tools::detail::is_const_iterable<Range> >::type* = nullptr); // C++14
polynomial(std::initializer_list<T> l); // C++11
polynomial(std::vector<T>&& p);
// access:
size_type size()const;
size_type degree()const;
value_type& operator[](size_type i);
const value_type& operator[](size_type i)const;
std::vector<T> const& data() const;
std::vector<T>& data();
explicit operator bool() const;
polynomial<T> prime() const;
polynomial<T> integrate() const;
T operator()(T z) const;
// modify:
void set_zero();
// operators:
template <class U>
polynomial& operator +=(const U& value);
template <class U>
polynomial& operator -=(const U& value);
template <class U>
polynomial& operator *=(const U& value);
template <class U>
polynomial& operator /=(const U& value);
template <class U>
polynomial& operator %=(const U& value);
template <class U>
polynomial& operator +=(const polynomial<U>& value);
template <class U>
polynomial& operator -=(const polynomial<U>& value);
template <class U>
polynomial& operator *=(const polynomial<U>& value);
template <class U>
polynomial& operator /=(const polynomial<U>& value);
template <class U>
polynomial& operator %=(const polynomial<U>& value);
};
template <class T>
polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator / (const polynomial<T>& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator % (const polynomial<T>& a, const polynomial<T>& b);
template <class T, class U>
polynomial<T> operator + (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator - (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator * (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator / (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator % (const polynomial<T>& a, const U& b);
template <class U, class T>
polynomial<T> operator + (const U& a, const polynomial<T>& b);
template <class U, class T>
polynomial<T> operator - (const U& a, const polynomial<T>& b);
template <class U, class T>
polynomial<T> operator * (const U& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator - (const polynomial<T>& a);
template <class T>
polynomial<T> operator >>= (const U& a);
template <class T>
polynomial<T> operator >> (polynomial<T> const &a, const U& b);
template <class T>
polynomial<T> operator <<= (const U& a);
template <class T>
polynomial<T> operator << (polynomial<T> const &a, const U& b);
template <class T>
bool operator == (const polynomial<T> &a, const polynomial<T> &b);
template <class T>
bool operator != (const polynomial<T> &a, const polynomial<T> &b);
template <class T>
polynomial<T> pow(polynomial<T> base, int exp);
template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& operator <<
(std::basic_ostream<charT, traits>& os, const polynomial<T>& poly);
template <typename T>
std::pair< polynomial<T>, polynomial<T> >
quotient_remainder(const polynomial<T>& a, const polynomial<T>& b);
} // namespace tools
}} // namespace boost { namespace math
[h4 Description]
This is a somewhat trivial class for polynomial manipulation.
See
* [@https://en.wikipedia.org/wiki/Polynomial Polynomial] and
* Donald E. Knuth, The Art of Computer Programming: Volume 2, Third edition, (1998)
Chapter 4.6.1, Algorithm D: Division of polynomials over a field.
Implementation is currently of the "naive" variety, with [bigo](N[super 2])
multiplication, for example. This class should not be used in
high-performance computing environments: it is intended for the
simple manipulation of small polynomials, typically generated
for special function approximation.
It does has division for polynomials over a [@https://en.wikipedia.org/wiki/Field_%28mathematics%29 field]
(here floating point, complex, etc)
and over a unique factorization domain (integers).
Division of polynomials over a field is compatible with
[@https://en.wikipedia.org/wiki/Euclidean_algorithm Euclidean GCD].
Division of polynomials over a UFD is compatible with the subresultant algorithm for GCD (implemented as subresultant_gcd), but a serious word of warning is required: the intermediate value swell of that algorithm will cause single-precision integral types to overflow very easily. So although the algorithm will work on single-precision integral types, an overload of the gcd function is only provided for polynomials with multi-precision integral types, to prevent nasty surprises. This is done somewhat crudely by disabling the overload for non-POD integral types.
Advanced manipulations: the FFT, factorisation etc are
not currently provided. Submissions for these are of course welcome :-)
[h4:polynomial_examples Polynomial Arithmetic Examples]
[import ../../example/polynomial_arithmetic.cpp]
[polynomial_arithmetic_0]
[polynomial_arithmetic_1]
[polynomial_arithmetic_2]
for output:
[polynomial_output_1]
[polynomial_arithmetic_3]
for output
[polynomial_output_2]
[h5 Division, Quotient and Remainder]
[polynomial_arithmetic_4]
The source code is at [@../../example/polynomial_arithmetic.cpp polynomial_arithmetic.cpp]
[endsect] [/section:polynomials Polynomials]
[/
Copyright 2006 John Maddock and Paul A. Bristow.
Copyright 2015 Jeremy William Murphy.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
|