File: airy.qbk

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (390 lines) | stat: -rw-r--r-- 11,676 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
[/
Copyright (c) 2012 John Maddock
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]

[section:airy Airy Functions]

[section:ai Airy Ai Function]

[heading Synopsis]

``
  #include <boost/math/special_functions/airy.hpp>
``

  namespace boost { namespace math {

   template <class T>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_ai(T x);

   template <class T, class Policy>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_ai(T x, const Policy&);

  }} // namespaces
  
[heading Description]

The function __airy_ai calculates the Airy function Ai which is the first solution
to the differential equation:

[equation airy]

See Weisstein, Eric W. "Airy Functions." From MathWorld--A Wolfram Web Resource.
[@http://mathworld.wolfram.com/AiryFunctions.html]

and [@https://en.wikipedia.org/wiki/Airy_zeta_function Airy Zeta function].

[optional_policy]

The following graph illustrates how this function changes as /x/ changes: for negative /x/
the function is cyclic, while for positive /x/ the value tends to zero:

[graph airy_ai]

[heading Accuracy]

This function is implemented entirely in terms of the Bessel functions 
__cyl_bessel_j and __cyl_bessel_k - refer to those functions for detailed accuracy information.

In general though, the relative error is low (less than 100 [epsilon]) for /x > 0/ while
only the absolute error is low for /x < 0/ as the following error plot illustrates:

[graph ai__double]

[heading Testing]

Since this function is implemented in terms of other special functions, there are only a few 
basic sanity checks, using test values from [@http://functions.wolfram.com/ Wolfram Airy Functions].

[heading Implementation]

This function is implemented in terms of the Bessel functions using the relations:

[equation airy_ai]

[endsect] [/section:ai Airy Ai Function]

[section:bi Airy Bi Function]

[heading Synopsis]

``
  #include <boost/math/special_functions/airy.hpp>
``

  namespace boost { namespace math {

   template <class T>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_bi(T x);

   template <class T, class Policy>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_bi(T x, const Policy&);

  }} // namespaces
  
[heading Description]

The function __airy_bi calculates the Airy function Bi which is the second solution to the differential equation:

[equation airy]

[optional_policy]

The following graph illustrates how this function changes as /x/ changes: for negative /x/
the function is cyclic, while for positive /x/ the value tends to infinity:

[graph airy_bi]

[heading Accuracy]

This function is implemented entirely in terms of the Bessel functions 
__cyl_bessel_i and __cyl_bessel_j - refer to those functions for detailed accuracy information.

In general though, the relative error is low (less than 100 [epsilon]) for /x > 0/ while
only the absolute error is low for /x < 0/ as the following error plot illustrate:

[graph bi__double]

[heading Testing]

Since this function is implemented in terms of other special functions, there are only a few 
basic sanity checks, using test values from [@http://functions.wolfram.com functions.wolfram.com].

[heading Implementation]

This function is implemented in terms of the Bessel functions using the relations:

[equation airy_bi]

[endsect] [/section:bi Airy Bi Function]

[section:aip Airy Ai' Function]

[heading Synopsis]

``
  #include <boost/math/special_functions/airy.hpp>
``

  namespace boost { namespace math {

   template <class T>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_ai_prime(T x);

   template <class T, class Policy>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_ai_prime(T x, const Policy&);

  }} // namespaces
  
[heading Description]

The function __airy_ai_prime calculates the Airy function Ai' which is the derivative of the first solution to the differential equation:

[equation airy]

[optional_policy]

The following graph illustrates how this function changes as /x/ changes: for negative /x/
the function is cyclic, while for positive /x/ the value tends to zero:

[graph airy_aip]

[heading Accuracy]

This function is implemented entirely in terms of the Bessel functions 
__cyl_bessel_j and __cyl_bessel_k - refer to those functions for detailed accuracy information.

In general though, the relative error is low (less than 100 [epsilon]) for /x > 0/ while
only the absolute error is low for /x < 0/ as the following error plot illustrates:

[graph ai_prime__double]

[heading Testing]

Since this function is implemented in terms of other special functions, there are only a few 
basic sanity checks, using test values from [@http://functions.wolfram.com functions.wolfram.com].

[heading Implementation]

This function is implemented in terms of the Bessel functions using the relations:

[equation airy_aip]

[endsect] [/section:aip Airy Ai' Function]

[section:bip Airy Bi' Function]

[heading Synopsis]

``
  #include <boost/math/special_functions/airy.hpp>
``

  namespace boost { namespace math {

   template <class T>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_bi_prime(T x);

   template <class T, class Policy>
   BOOST_MATH_GPU_ENABLED ``__sf_result`` airy_bi_prime(T x, const Policy&);

  }} // namespaces
  
[heading Description]

The function __airy_bi_prime calculates the Airy function Bi' which is the derivative of the second solution to the differential equation:

[equation airy]

[optional_policy]

The following graph illustrates how this function changes as /x/ changes: for negative /x/
the function is cyclic, while for positive /x/ the value tends to infinity:

[graph airy_bi]

[heading Accuracy]

This function is implemented entirely in terms of the Bessel functions 
__cyl_bessel_i and __cyl_bessel_j - refer to those functions for detailed accuracy information.

In general though, the relative error is low (less than 100 [epsilon]) for /x > 0/ while
only the absolute error is low for /x < 0/ as the following error plot illustrates:

[graph bi_prime__double]

[heading Testing]

Since this function is implemented in terms of other special functions, there are only a few 
basic sanity checks, using test values from [@http://functions.wolfram.com functions.wolfram.com].

[heading Implementation]

This function is implemented in terms of the Bessel functions using the relations:

[equation airy_bip]

[endsect] [/section:bip Airy Bi' Function]

[section:airy_root Finding Zeros of Airy Functions]

[h4 Synopsis]

`#include <boost/math/special_functions/airy.hpp>`

Functions for obtaining both a single zero or root of the Airy functions,
and placing multiple zeros into a container like `std::vector`
by providing an output iterator.

The signature of the single value functions are:

  template <class T>
  BOOST_MATH_GPU_ENABLED T airy_ai_zero(
           int m);         // 1-based index of zero.

  template <class T>
  BOOST_MATH_GPU_ENABLED T airy_bi_zero(
           int m);         // 1-based index of zero.

and for multiple zeros:

 template <class T, class OutputIterator>
 BOOST_MATH_GPU_ENABLED OutputIterator airy_ai_zero(
                      int start_index,           // 1-based index of first zero.
                      unsigned number_of_zeros,  // How many zeros to generate.
                      OutputIterator out_it);    // Destination for zeros.

 template <class T, class OutputIterator>
 BOOST_MATH_GPU_ENABLED OutputIterator airy_bi_zero(
                      int start_index,           // 1-based index of zero.
                      unsigned number_of_zeros,  // How many zeros to generate
                      OutputIterator out_it);    // Destination for zeros.

There are also versions which allow control of the __policy_section for error handling and precision.

  template <class T>
  BOOST_MATH_GPU_ENABLED T airy_ai_zero(
           int m,          // 1-based index of zero.
           const Policy&); // Policy to use.

  template <class T>
  BOOST_MATH_GPU_ENABLED T airy_bi_zero(
           int m,          // 1-based index of zero.
           const Policy&); // Policy to use.


 template <class T, class OutputIterator>
 BOOST_MATH_GPU_ENABLED OutputIterator airy_ai_zero(
                      int start_index,           // 1-based index of first zero.
                      unsigned number_of_zeros,  // How many zeros to generate.
                      OutputIterator out_it,     // Destination for zeros.
                      const Policy& pol);        // Policy to use.

 template <class T, class OutputIterator>
 BOOST_MATH_GPU_ENABLED OutputIterator airy_bi_zero(
                      int start_index,           // 1-based index of zero.
                      unsigned number_of_zeros,  // How many zeros to generate.
                      OutputIterator out_it,     // Destination for zeros.
                      const Policy& pol);        // Policy to use.

[h4 Description]

The Airy Ai and Bi functions have an infinite
number of zeros on the negative real axis. The real zeros on the negative real
axis can be found by solving for the roots of

[:['Ai(x[sub m]) = 0]]

[:['Bi(y[sub m]) = 0]]

Here, ['x[sub m]] represents the ['m[super th]]
root of the Airy Ai function,
and ['y[sub m]] represents the ['m[super th]]
root of the Airy Bi function.

The zeros or roots (values of `x` where the function crosses the horizontal `y = 0` axis)
of the Airy Ai and Bi functions are computed by two functions,
`airy_ai_zero` and `airy_bi_zero`.

In each case the index or rank of the zero
returned is 1-based, which is to say:

   airy_ai_zero(1);

returns the first zero of Ai.

Passing an `start_index <= 0` results in a __domain_error being raised.

The first few zeros returned by these functions have approximate values as follows:

[table
[[m][Ai][Bi]]
[[1][-2.33811...][-1.17371...]]
[[2][-4.08795...][-3.27109...]]
[[3][-5.52056...][-4.83074...]]
[[4][-6.78671...][-6.16985...]]
[[5][-7.94413...][-7.37676...]]
[[6][-9.02265...][-8.49195...]]
]

[graph airy_zeros]

[h4 Examples of finding Airy Zeros]

[import ../../example/airy_zeros_example.cpp]

[airy_zeros_example_1]
[airy_zeros_example_2]

Produces the program output:
[pre
boost::math::airy_ai_zero<double>(1) = -2.33811
boost::math::airy_ai_zero<double>(2) = -4.08795
boost::math::airy_bi_zero<double>(3) = -4.83074
airy_ai_zeros:
-2.33811
-4.08795
-5.52056
-6.78671
-7.94413

boost::math::airy_bi_zero<float_type>(1)  = -2.3381074104597670384891972524467354406385401456711
boost::math::airy_bi_zero<float_type>(2)  = -4.0879494441309706166369887014573910602247646991085
boost::math::airy_bi_zero<float_type>(7)  = -9.5381943793462388866329885451560196208390720763825
airy_ai_zeros:
-2.3381074104597670384891972524467354406385401456711
-4.0879494441309706166369887014573910602247646991085
-5.5205598280955510591298555129312935737972142806175
]

The full code (and output) for this example is at
[@../../example/airy_zeros_example.cpp airy_zeros_example.cpp],

[h3 Implementation]

Given the following function (A&S 10.4.105):

[equation airy_zero_1]

Then an initial estimate for the n[super th] zero a[sub n] of Ai is given by (A&S 10.4.94):

[equation airy_zero_2]

and an initial estimate for the n[super th] zero b[sub n] of Bi is given by (A&S 10.4.98):

[equation airy_zero_3]

Thereafter the roots are refined using Newton iteration.

[h3 Testing]

The precision of evaluation of zeros was tested at 50 decimal digits using `cpp_dec_float_50`
and found identical with spot values computed by __WolframAlpha.

[endsect] [/section:airy_root Finding Zeros of Airy Functions]

[endsect] [/section:airy Airy Functions]