1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
[/
Copyright (c) 2006 Xiaogang Zhang
Copyright (c) 2006 John Maddock
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
[section:ellint_carlson Elliptic Integrals - Carlson Form]
[heading Synopsis]
``
#include <boost/math/special_functions/ellint_rf.hpp>
``
namespace boost { namespace math {
template <class T1, class T2, class T3>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rf(T1 x, T2 y, T3 z)
template <class T1, class T2, class T3, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rf(T1 x, T2 y, T3 z, const ``__Policy``&)
}} // namespaces
``
#include <boost/math/special_functions/ellint_rd.hpp>
``
namespace boost { namespace math {
template <class T1, class T2, class T3>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rd(T1 x, T2 y, T3 z)
template <class T1, class T2, class T3, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rd(T1 x, T2 y, T3 z, const ``__Policy``&)
}} // namespaces
``
#include <boost/math/special_functions/ellint_rj.hpp>
``
namespace boost { namespace math {
template <class T1, class T2, class T3, class T4>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rj(T1 x, T2 y, T3 z, T4 p)
template <class T1, class T2, class T3, class T4, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rj(T1 x, T2 y, T3 z, T4 p, const ``__Policy``&)
}} // namespaces
``
#include <boost/math/special_functions/ellint_rc.hpp>
``
namespace boost { namespace math {
template <class T1, class T2>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rc(T1 x, T2 y)
template <class T1, class T2, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rc(T1 x, T2 y, const ``__Policy``&)
}} // namespaces
``
#include <boost/math/special_functions/ellint_rg.hpp>
``
namespace boost { namespace math {
template <class T1, class T2, class T3>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rg(T1 x, T2 y, T3 z)
template <class T1, class T2, class T3, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rg(T1 x, T2 y, T3 z, const ``__Policy``&)
}} // namespaces
[heading Description]
These functions return Carlson's symmetrical elliptic integrals, the functions
have complicated behavior over all their possible domains, but the following
graph gives an idea of their behavior:
[graph ellint_carlson]
The return type of these functions is computed using the __arg_promotion_rules
when the arguments are of different types: otherwise the return is the same type
as the arguments.
template <class T1, class T2, class T3>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rf(T1 x, T2 y, T3 z)
template <class T1, class T2, class T3, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rf(T1 x, T2 y, T3 z, const ``__Policy``&)
Returns Carlson's Elliptic Integral ['R[sub F]]:
[equation ellint9]
Requires that all of the arguments are non-negative, and at most
one may be zero. Otherwise returns the result of __domain_error.
[optional_policy]
template <class T1, class T2, class T3>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rd(T1 x, T2 y, T3 z)
template <class T1, class T2, class T3, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rd(T1 x, T2 y, T3 z, const ``__Policy``&)
Returns Carlson's elliptic integral R[sub D]:
[equation ellint10]
Requires that x and y are non-negative, with at most one of them
zero, and that z >= 0. Otherwise returns the result of __domain_error.
[optional_policy]
template <class T1, class T2, class T3, class T4>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rj(T1 x, T2 y, T3 z, T4 p)
template <class T1, class T2, class T3, class T4, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rj(T1 x, T2 y, T3 z, T4 p, const ``__Policy``&)
Returns Carlson's elliptic integral R[sub J]:
[equation ellint11]
Requires that x, y and z are non-negative, with at most one of them
zero, and that ['p != 0]. Otherwise returns the result of __domain_error.
[optional_policy]
When ['p < 0] the function returns the
[@http://en.wikipedia.org/wiki/Cauchy_principal_value Cauchy principal value]
using the relation:
[equation ellint17]
template <class T1, class T2>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rc(T1 x, T2 y)
template <class T1, class T2, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rc(T1 x, T2 y, const ``__Policy``&)
Returns Carlson's elliptic integral R[sub C]:
[equation ellint12]
Requires that ['x > 0] and that ['y != 0].
Otherwise returns the result of __domain_error.
[optional_policy]
When ['y < 0] the function returns the
[@http://mathworld.wolfram.com/CauchyPrincipalValue.html Cauchy principal value]
using the relation:
[equation ellint18]
template <class T1, class T2, class T3>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rg(T1 x, T2 y, T3 z)
template <class T1, class T2, class T3, class ``__Policy``>
BOOST_MATH_GPU_ENABLED ``__sf_result`` ellint_rg(T1 x, T2 y, T3 z, const ``__Policy``&)
Returns Carlson's elliptic integral ['R[sub G]:]
[equation ellint27]
Requires that x and y are non-negative, otherwise returns the result of __domain_error.
[optional_policy]
[heading Testing]
There are two sets of tests.
Spot tests compare selected values with test data given in:
[:B. C. Carlson, ['[@http://arxiv.org/abs/math.CA/9409227
Numerical computation of real or complex elliptic integrals]]. Numerical Algorithms,
Volume 10, Number 1 / March, 1995, pp 13-26.]
Random test data generated using NTL::RR at 1000-bit precision and our
implementation checks for rounding-errors and/or regressions.
There are also sanity checks that use the inter-relations between the integrals
to verify their correctness: see the above Carlson paper for details.
[heading Accuracy]
These functions are computed using only basic arithmetic operations, so
there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating-point type on the
system are given as narrower types have __zero_error. All values
are relative errors in units of epsilon.
[table_ellint_rc]
[table_ellint_rd]
[table_ellint_rg]
[table_ellint_rf]
[table_ellint_rj]
[heading Implementation]
The key of Carlson's algorithm [[link ellint_ref_carlson79 Carlson79]] is the
duplication theorem:
[equation ellint13]
By applying it repeatedly, ['x], ['y], ['z] get
closer and closer. When they are nearly equal, the special case equation
[equation ellint16]
is used. More specifically, ['[R F]] is evaluated from a Taylor series
expansion to the fifth order. The calculations of the other three integrals
are analogous, except for R[sub C] which can be computed from elementary functions.
For ['p < 0] in ['R[sub J](x, y, z, p)] and ['y < 0] in ['R[sub C](x, y)],
the integrals are singular and their
[@http://mathworld.wolfram.com/CauchyPrincipalValue.html Cauchy principal values]
are returned via the relations:
[equation ellint17]
[equation ellint18]
[endsect] [/section:ellint_carlson Elliptic Integrals - Carlson Form]
|