1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
[/
Copyright (c) 2012 John Maddock
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
[section:jacobi Jacobi Elliptic Functions]
[section:jac_over Overview of the Jacobi Elliptic Functions]
There are twelve Jacobi Elliptic functions, of which the three copolar functions ['sn], ['cn] and ['dn] are the most important
as the other nine can be computed from these three
[footnote [@http://en.wikipedia.org/wiki/Jacobi_elliptic_functions Wikipedia: Jacobi elliptic functions]]
[footnote [@http://mathworld.wolfram.com/JacobiEllipticFunctions.html Weisstein, Eric W. "Jacobi Elliptic Functions." From MathWorld - A Wolfram Web Resource.]]
[footnote [@http://dlmf.nist.gov/22 Digital Library of Mathematical Functions: Jacobian Elliptic Functions, Reinhardt, W. P., Walker, O. L.]].
These functions each take two arguments: a parameter, and a variable as described below.
Like all elliptic functions these can be parameterised in a number of ways:
* In terms of a parameter ['m].
* In terms of the elliptic modulus ['k] where ['m = k[super 2]].
* In terms of the modular angle [alpha], where ['m = sin[super 2][thin][alpha]].
In our implementation, these functions all take the elliptic modulus /k/ as the parameter.
In addition the variable /u/ is sometimes expressed as an amplitude [phi], in our implementation we always use /u/.
Finally note that our functions all take the elliptic modulus /k/ as the *first* argument - this is for alignment with
the Elliptic Integrals (but is different from other implementations, for example Mathworks).
A simple example comparing use of __WolframAlpha with Boost.Math (including much higher precision using Boost.Multiprecision)
is [@../../example/jacobi_zeta_example.cpp jacobi_zeta_example.cpp].
There are twelve functions for computing the twelve individual Jacobi elliptic functions: __jacobi_cd, __jacobi_cn, __jacobi_cs,
__jacobi_dc, __jacobi_dn, __jacobi_ds, __jacobi_nc, __jacobi_nd, __jacobi_ns, __jacobi_sc, __jacobi_sd and __jacobi_sn.
They are all called as for example:
jacobi_cs(k, u);
Note however that these individual functions are all really thin wrappers around the function __jacobi_elliptic which calculates
the three copolar functions ['sn], ['cn] and ['dn] in a single function call.
[tip If you need more than one of these functions
for a given set of arguments, it's most efficient to use __jacobi_elliptic.]
[endsect] [/section:jac_over Overview of the Jacobi Elliptic Functions]
[section:jacobi_elliptic Jacobi Elliptic SN, CN and DN]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U, class V>
``__sf_result`` jacobi_elliptic(T k, U u, V* pcn, V* pdn);
template <class T, class U, class V, class Policy>
``__sf_result`` jacobi_elliptic(T k, U u, V* pcn, V* pdn, const Policy&);
}} // namespaces
[heading Description]
The function __jacobi_elliptic calculates the three copolar Jacobi elliptic functions
['sn(u, k)], ['cn(u, k)] and ['dn(u, k)]. The returned value is
['sn(u, k)], and if provided, `*pcn` is
set to ['cn(u, k)], and `*pdn` is set to ['dn(u, k)].
The functions are defined as follows, given:
[equation jacobi1]
The the angle ['[phi]] is called the ['amplitude] and:
[equation jacobi2]
[note
['[phi]] is called the amplitude.
['k] is called the elliptic modulus.
]
[caution Rather like other elliptic functions, the Jacobi functions
are expressed in a variety of different ways. In particular,
the parameter /k/ (the modulus) may also be expressed using a modular
angle [alpha], or a parameter /m/. These are related by:
[expression k = sin [alpha]]
[expression m = k[super 2] = sin[super 2][alpha]]
So that the function ['sn] (for example) may be expressed as
either:
[expression sn(u, k)]
[expression sn(u \\ [alpha])]
[expression sn(u | m)]
To further complicate matters, some texts refer to the ['complement
of the parameter m], or 1 - m, where:
[expression 1 - m = 1 - k[super 2] = cos[super 2][alpha]]
This implementation uses /k/ throughout, and makes this the first argument
to the functions: this is for alignment with the elliptic integrals which match the requirements
of the [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
Technical Report on C++ Library Extensions]. However, you should
be extra careful when using these functions!]
[optional_policy]
The following graphs illustrate how these functions change as /k/ changes: for small /k/
these are sine waves, while as /k/ tends to 1 they become hyperbolic functions:
[graph jacobi_sn]
[graph jacobi_cn]
[graph jacobi_dn]
[heading Accuracy]
These functions are computed using only basic arithmetic operations and trigonometric functions, so
there isn't much variation in accuracy over differing platforms.
Typically errors are trivially small for small angles, and as is typical for cyclic
functions, grow as the angle increases.
Note that only results for the widest floating-point type on the
system are given as narrower types have __zero_error. All values
are relative errors in units of epsilon.
[table_jacobi_cn]
[table_jacobi_dn]
[table_jacobi_sn]
[heading Testing]
The tests use a mixture of spot test values calculated using the online
calculator at [@http://functions.wolfram.com/ functions.wolfram.com],
and random test data generated using
MPFR at 1000-bit precision and this implementation.
[heading Implementation]
For ['k > 1] we apply the relations:
[equation jacobi3]
Then filter off the special cases:
[expression ['sn(0, k) = 0] and ['cn(0, k) = dn(0, k) = 1]]
[expression ['sn(u, 0) = sin(u), cn(u, 0) = cos(u) and dn(u, 0) = 1]]
[expression ['sn(u, 1) = tanh(u), cn(u, 1) = dn(u, 1) = 1 / cosh(u)]]
And for ['k[super 4] < [epsilon]] we have:
[equation jacobi4]
Otherwise the values are calculated using the method of [@http://dlmf.nist.gov/22.20#SS2 arithmetic geometric means].
[endsect] [/section:jacobi_elliptic Jacobi Elliptic SN, CN and DN]
[section:jacobi_cd Jacobi Elliptic Function cd]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_cd(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_cd(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['cd].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['cd(u, k) = cn(u, k) / dn(u, k)]]
[graph jacobi_cd]
[endsect] [/section:jacobi_cd Jacobi Elliptic Function cd]
[section:jacobi_cn Jacobi Elliptic Function cn]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_cn(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_cn(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['cn].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic.
[graph jacobi_cn]
[endsect] [/section:jacobi_cn Jacobi Elliptic Function cn]
[section:jacobi_cs Jacobi Elliptic Function cs]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_cs(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_cs(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['cs].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['cs(u, k) = cn(u, k) / sn(u, k)]]
[graph jacobi_cs]
[endsect] [/section:jacobi_cs Jacobi Elliptic Function cs]
[section:jacobi_dc Jacobi Elliptic Function dc]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_dc(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_dc(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['dc].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['dc(u, k) = dn(u, k) / cn(u, k)]]
[graph jacobi_dc]
[endsect] [/section:jacobi_dc Jacobi Elliptic Function dc]
[section:jacobi_dn Jacobi Elliptic Function dn]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_dn(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_dn(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['dn].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic.
[graph jacobi_dn]
[endsect]
[section:jacobi_ds Jacobi Elliptic Function ds]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_ds(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_ds(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['ds].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['ds(u, k) = dn(u, k) / sn(u, k)]]
[graph jacobi_ds]
[endsect] [/section:jacobi_dn Jacobi Elliptic Function dn]
[section:jacobi_nc Jacobi Elliptic Function nc]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_nc(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_nc(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['nc].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['nc(u, k) = 1 / cn(u, k)]]
[graph jacobi_nc]
[endsect] [/section:jacobi_nc Jacobi Elliptic Function nc]
[section:jacobi_nd Jacobi Elliptic Function nd]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_nd(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_nd(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['nd].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['nd(u, k) = 1 / dn(u, k)]]
[graph jacobi_nd]
[endsect] [/section:jacobi_nd Jacobi Elliptic Function nd]
[section:jacobi_ns Jacobi Elliptic Function ns]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_ns(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_ns(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['ns].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['ns(u, k) = 1 / sn(u, k)]]
[graph jacobi_ns]
[endsect] [/section:jacobi_ns Jacobi Elliptic Function ns]
[section:jacobi_sc Jacobi Elliptic Function sc]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_sc(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_sc(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['sc].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['sc(u, k) = sn(u, k) / cn(u, k)]]
[graph jacobi_sc]
[endsect] [/section:jacobi_sc Jacobi Elliptic Function sc]
[section:jacobi_sd Jacobi Elliptic Function sd]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_sd(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_sd(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['sd].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic, with:
[expression ['sd(u, k) = sn(u, k) / dn(u, k)]]
[graph jacobi_sd]
[endsect] [/section:jacobi_sd Jacobi Elliptic Function sd]
[section:jacobi_sn Jacobi Elliptic Function sn]
[heading Synopsis]
``
#include <boost/math/special_functions/jacobi_elliptic.hpp>
``
namespace boost { namespace math {
template <class T, class U>
``__sf_result`` jacobi_sn(T k, U u);
template <class T, class U, class Policy>
``__sf_result`` jacobi_sn(T k, U u, const Policy& pol);
}} // namespaces
[heading Description]
This function returns the Jacobi elliptic function ['sn].
[optional_policy]
This function is a trivial wrapper around __jacobi_elliptic.
[graph jacobi_sn]
[endsect] [/section:jacobi_sn Jacobi Elliptic Function sn]
[endsect] [/section:jacobi Jacobi Elliptic Functions]
|