1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
[section:powers Basic Functions]
[section:sin_pi sin_pi]
``
#include <boost/math/special_functions/sin_pi.hpp>
``
namespace boost{ namespace math{
template <class T>
``__sf_result`` sin_pi(T x);
template <class T, class ``__Policy``>
``__sf_result`` sin_pi(T x, const ``__Policy``&);
}} // namespaces
Returns the sine of ['[pi][thin]x]. [/thin space to avoid collision of italic chars.]
The return type of this function is computed using the __arg_promotion_rules:
the return is `double` when /x/ is an integer type and T otherwise.
[optional_policy]
This function performs exact all-integer arithmetic argument reduction before computing the sine of ['[pi][sdot]x].
[table_sin_pi]
[endsect] [/section:sin_pi sin_pi]
[section:cos_pi cos_pi]
``
#include <boost/math/special_functions/cos_pi.hpp>
``
namespace boost{ namespace math{
template <class T>
``__sf_result`` cos_pi(T x);
template <class T, class ``__Policy``>
``__sf_result`` cos_pi(T x, const ``__Policy``&);
}} // namespaces
Returns the cosine of ['[pi][thin]x].
The return type of this function is computed using the __arg_promotion_rules:
the return is `double` when /x/ is an integer type and T otherwise.
[optional_policy]
This function performs exact all-integer arithmetic argument reduction before computing the cosine of ['[pi][cdot]x].
[table_cos_pi]
[endsect] [/section:cos_pi cos_pi]
[section:log1p log1p]
``
#include <boost/math/special_functions/log1p.hpp>
``
namespace boost{ namespace math{
template <class T>
``__sf_result`` log1p(T x);
template <class T, class ``__Policy``>
``__sf_result`` log1p(T x, const ``__Policy``&);
}} // namespaces
Returns the natural logarithm of /x+1/.
The return type of this function is computed using the __arg_promotion_rules:
the return is `double` when /x/ is an integer type and T otherwise.
[optional_policy]
There are many situations where it is desirable to compute `log(x+1)`.
However, for small /x/ then /x+1/ suffers from catastrophic cancellation errors
so that /x+1 == 1/ and /log(x+1) == 0/, when in fact for very small x, the
best approximation to /log(x+1)/ would be /x/. `log1p` calculates the best
approximation to `log(1+x)` using a Taylor series expansion for accuracy
(less than __te).
Alternatively note that there are faster methods available,
for example using the equivalence:
[:['log(1+x) == (log(1+x) * x) / ((1+x) - 1)]]
However, experience has shown that these methods tend to fail quite spectacularly
once the compiler's optimizations are turned on, consequently they are
used only when known not to break with a particular compiler.
In contrast, the series expansion method seems to be reasonably
immune to optimizer-induced errors.
Finally when macro BOOST_HAS_LOG1P is defined then the `float/double/long double`
specializations of this template simply forward to the platform's
native (POSIX) implementation of this function.
The following graph illustrates the behaviour of log1p:
[graph log1p]
[h4 Accuracy]
For built in floating point types `log1p`
should have approximately 1 __epsilon accuracy.
[table_log1p]
[h4 Testing]
A mixture of spot test sanity checks, and random high precision test values
calculated using NTL::RR at 1000-bit precision.
[endsect] [/section:log1p log1p]
[section:expm1 expm1]
``
#include <boost/math/special_functions/expm1.hpp>
``
namespace boost{ namespace math{
template <class T>
``__sf_result`` expm1(T x);
template <class T, class ``__Policy``>
``__sf_result`` expm1(T x, const ``__Policy``&);
}} // namespaces
Returns e[super x] - 1.
The return type of this function is computed using the __arg_promotion_rules:
the return is `double` when /x/ is an integer type and T otherwise.
[optional_policy]
For small /x/, then __ex is very close to 1, as a result calculating __exm1 results
in catastrophic cancellation errors when /x/ is small. `expm1` calculates __exm1 using
rational approximations (for up to 128-bit long doubles), otherwise via
a series expansion when x is small (giving an accuracy of less than __te).
Finally when BOOST_HAS_EXPM1 is defined then the `float/double/long double`
specializations of this template simply forward to the platform's
native (POSIX) implementation of this function.
The following graph illustrates the behaviour of expm1:
[graph expm1]
[h4 Accuracy]
For built in floating point types `expm1`
should have approximately 1 epsilon accuracy.
[table_expm1]
[h4 Testing]
A mixture of spot test sanity checks, and random high precision test values
calculated using NTL::RR at 1000-bit precision.
[endsect] [/section:expm1 expm1]
[section:cbrt cbrt]
``
#include <boost/math/special_functions/cbrt.hpp>
``
namespace boost{ namespace math{
template <class T>
``__sf_result`` cbrt(T x);
template <class T, class ``__Policy``>
``__sf_result`` cbrt(T x, const ``__Policy``&);
}} // namespaces
Returns the cubed root of x: x[super 1/3] or [cbrt]x.
The return type of this function is computed using the __arg_promotion_rules:
the return is `double` when /x/ is an integer type and T otherwise.
[optional_policy]
Implemented using Halley iteration.
The following graph illustrates the behaviour of cbrt:
[graph cbrt]
[h4 Accuracy]
For built in floating-point types `cbrt` should have approximately 2 epsilon accuracy.
[table_cbrt]
[h4 Testing]
A mixture of spot test sanity checks, and random high precision test values
calculated using NTL::RR at 1000-bit precision.
[endsect] [/section:cbrt cbrt]
[section:sqrt1pm1 sqrt1pm1]
``
#include <boost/math/special_functions/sqrt1pm1.hpp>
``
namespace boost{ namespace math{
template <class T>
``__sf_result`` sqrt1pm1(T x);
template <class T, class ``__Policy``>
``__sf_result`` sqrt1pm1(T x, const ``__Policy``&);
}} // namespaces
Returns `sqrt(1+x) - 1`.
The return type of this function is computed using the __arg_promotion_rules:
the return is `double` when /x/ is an integer-type and T otherwise.
[optional_policy]
This function is useful when you need the difference between `sqrt(x)` and 1, when
/x/ is itself close to 1.
Implemented in terms of `log1p` and `expm1`.
The following graph illustrates the behaviour of sqrt1pm1:
[graph sqrt1pm1]
[h4 Accuracy]
For built in floating-point types `sqrt1pm1`
should have approximately 3 epsilon accuracy.
[table_sqrt1pm1]
[h4 Testing]
A selection of random high precision test values
calculated using NTL::RR at 1000-bit precision.
[endsect] [/section:sqrt1pm1 sqrt1pm1]
[section:powm1 powm1]
``
#include <boost/math/special_functions/powm1.hpp>
``
namespace boost{ namespace math{
template <class T1, class T2>
``__sf_result`` powm1(T1 x, T2 y);
template <class T1, class T2, class ``__Policy``>
``__sf_result`` powm1(T1 x, T2 y, const ``__Policy``&);
}} // namespaces
Returns x[super y ] - 1.
The return type of this function is computed using the __arg_promotion_rules
when T1 and T2 are different types.
[optional_policy]
There are two domains where this is useful: when /y/ is very small, or when
/x/ is close to 1.
Note that for invalid input this function may raise a __domain_error or __overflow_error as appropriate.
Implemented in terms of `expm1`.
The following graph illustrates the behaviour of powm1:
[graph powm1]
[h4 Accuracy]
Should have approximately 2-3 epsilon accuracy.
[table_powm1]
[h4 Testing]
A selection of random high precision test values
calculated using NTL::RR at 1000-bit precision.
[endsect] [/section:powm1 powm1]
[section:hypot hypot]
template <class T1, class T2>
``__sf_result`` hypot(T1 x, T2 y);
template <class T1, class T2, class ``__Policy``>
``__sf_result`` hypot(T1 x, T2 y, const ``__Policy``&);
__effects computes [equation hypot]
in such a way as to avoid undue underflow and overflow.
The return type of this function is computed using the __arg_promotion_rules
when T1 and T2 are of different types.
[optional_policy]
When calculating [equation hypot] it's quite easy for the intermediate terms to either
overflow or underflow, even though the result is in fact perfectly representable.
[h4 Implementation]
The function is even and symmetric in /x/ and /y/, so first take assume
['x,y > 0] and ['x > y] (we can permute the arguments if this is not the case).
Then if ['x * [epsilon] >= y] we can simply return /x/.
Otherwise the result is given by:
[equation hypot2]
[endsect] [/section:hypot hypot]
[include pow.qbk]
[include rsqrt.qbk]
[include logaddexp.qbk]
[endsect] [/section:powers Logs, Powers, Roots and Exponentials]
[/
Copyright 2006 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
|