1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// (C) Copyright John Maddock 2018.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/tools/fraction.hpp>
#include <iostream>
#include <complex>
#include <boost/multiprecision/cpp_complex.hpp>
//[golden_ratio_1
template <class T>
struct golden_ratio_fraction
{
typedef T result_type;
result_type operator()()
{
return 1;
}
};
//]
//[cf_tan_fraction
template <class T>
struct tan_fraction
{
private:
T a, b;
public:
tan_fraction(T v)
: a(-v * v), b(-1)
{}
typedef std::pair<T, T> result_type;
std::pair<T, T> operator()()
{
b += 2;
return std::make_pair(a, b);
}
};
//]
//[cf_tan
template <class T>
T tan(T a)
{
tan_fraction<T> fract(a);
return a / continued_fraction_b(fract, std::numeric_limits<T>::epsilon());
}
//]
//[cf_expint_fraction
template <class T>
struct expint_fraction
{
typedef std::pair<T, T> result_type;
expint_fraction(unsigned n_, T z_) : b(z_ + T(n_)), i(-1), n(n_) {}
std::pair<T, T> operator()()
{
std::pair<T, T> result = std::make_pair(-static_cast<T>((i + 1) * (n + i)), b);
b += 2;
++i;
return result;
}
private:
T b;
int i;
unsigned n;
};
//]
//[cf_expint
template <class T>
inline std::complex<T> expint_as_fraction(unsigned n, std::complex<T> const& z)
{
std::uintmax_t max_iter = 1000;
expint_fraction<std::complex<T> > f(n, z);
std::complex<T> result = boost::math::tools::continued_fraction_b(
f,
std::complex<T>(std::numeric_limits<T>::epsilon()),
max_iter);
result = exp(-z) / result;
return result;
}
//]
//[cf_upper_gamma_fraction
template <class T>
struct upper_incomplete_gamma_fract
{
private:
typedef typename T::value_type scalar_type;
T z, a;
int k;
public:
typedef std::pair<T, T> result_type;
upper_incomplete_gamma_fract(T a1, T z1)
: z(z1 - a1 + scalar_type(1)), a(a1), k(0)
{
}
result_type operator()()
{
++k;
z += scalar_type(2);
return result_type(scalar_type(k) * (a - scalar_type(k)), z);
}
};
//]
//[cf_gamma_Q
template <class T>
inline std::complex<T> gamma_Q_as_fraction(const std::complex<T>& a, const std::complex<T>& z)
{
upper_incomplete_gamma_fract<std::complex<T> > f(a, z);
std::complex<T> eps(std::numeric_limits<T>::epsilon());
return pow(z, a) / (exp(z) *(z - a + T(1) + boost::math::tools::continued_fraction_a(f, eps)));
}
//]
inline boost::multiprecision::cpp_complex_50 gamma_Q_as_fraction(const boost::multiprecision::cpp_complex_50& a, const boost::multiprecision::cpp_complex_50& z)
{
upper_incomplete_gamma_fract<boost::multiprecision::cpp_complex_50> f(a, z);
boost::multiprecision::cpp_complex_50 eps(std::numeric_limits<boost::multiprecision::cpp_complex_50::value_type>::epsilon());
return pow(z, a) / (exp(z) * (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)));
}
int main()
{
using namespace boost::math::tools;
//[cf_gr
golden_ratio_fraction<double> func;
double gr = continued_fraction_a(
func,
std::numeric_limits<double>::epsilon());
std::cout << "The golden ratio is: " << gr << std::endl;
//]
std::cout << tan(0.5) << std::endl;
std::complex<double> arg(3, 2);
std::cout << expint_as_fraction(5, arg) << std::endl;
std::complex<double> a(3, 3), z(3, 2);
std::cout << gamma_Q_as_fraction(a, z) << std::endl;
boost::multiprecision::cpp_complex_50 am(3, 3), zm(3, 2);
std::cout << gamma_Q_as_fraction(am, zm) << std::endl;
return 0;
}
|