1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*
* Copyright Nick Thompson, 2018
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <complex>
#include <bitset>
#include <boost/math/tools/assert.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/math/special_functions/binomial.hpp>
#include <boost/multiprecision/cpp_complex.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
typedef boost::multiprecision::float128 float128_t;
#else
typedef boost::multiprecision::cpp_bin_float_quad float128_t;
#endif
//#include <boost/multiprecision/complex128.hpp>
#include <boost/math/quadrature/gauss_kronrod.hpp>
using std::string;
using boost::math::tools::polynomial;
using boost::math::binomial_coefficient;
using boost::math::tools::schroder_iterate;
using boost::math::tools::halley_iterate;
using boost::math::tools::newton_raphson_iterate;
using boost::math::tools::complex_newton;
using boost::math::constants::half;
using boost::math::constants::root_two;
using boost::math::constants::pi;
using boost::math::quadrature::gauss_kronrod;
using boost::multiprecision::cpp_bin_float_100;
using boost::multiprecision::cpp_complex_100;
template<class Complex>
std::vector<std::pair<Complex, Complex>> find_roots(size_t p)
{
// Initialize the polynomial; see Mallat, A Wavelet Tour of Signal Processing, equation 7.96
BOOST_MATH_ASSERT(p>0);
typedef typename Complex::value_type Real;
std::vector<Complex> coeffs(p);
for (size_t k = 0; k < coeffs.size(); ++k)
{
coeffs[k] = Complex(binomial_coefficient<Real>(p-1+k, k), 0);
}
polynomial<Complex> P(std::move(coeffs));
polynomial<Complex> Pcopy = P;
polynomial<Complex> Pcopy_prime = P.prime();
auto orig = [&](Complex z) { return std::make_pair<Complex, Complex>(Pcopy(z), Pcopy_prime(z)); };
polynomial<Complex> P_prime = P.prime();
// Polynomial is of degree p-1.
std::vector<Complex> roots(p-1, {std::numeric_limits<Real>::quiet_NaN(),std::numeric_limits<Real>::quiet_NaN()});
size_t i = 0;
while(P.size() > 1)
{
Complex guess = {0.0, 1.0};
std::cout << std::setprecision(std::numeric_limits<Real>::digits10+3);
auto f = [&](Complex x)->std::pair<Complex, Complex>
{
return std::make_pair<Complex, Complex>(P(x), P_prime(x));
};
Complex r = complex_newton(f, guess);
using std::isnan;
if(isnan(r.real()))
{
int i = 50;
do {
// Try a different guess
guess *= Complex(1.0,-1.0);
r = complex_newton(f, guess);
std::cout << "New guess: " << guess << ", result? " << r << std::endl;
} while (isnan(r.real()) && i-- > 0);
if (isnan(r.real()))
{
std::cout << "Polynomial that killed the process: " << P << std::endl;
throw std::logic_error("Newton iteration did not converge");
}
}
// Refine r with the original function.
// We only use the polynomial division to ensure we don't get the same root over and over.
// However, the division induces error which can grow quickly-or slowly! See Numerical Recipes, section 9.5.1.
r = complex_newton(orig, r);
if (isnan(r.real()))
{
throw std::logic_error("Found a root for the deflated polynomial which is not a root for the original. Indicative of catastrophic numerical error.");
}
// Test the root:
using std::sqrt;
Real tol = sqrt(sqrt(std::numeric_limits<Real>::epsilon()));
if (norm(Pcopy(r)) > tol)
{
std::cout << "This is a bad root: P" << r << " = " << Pcopy(r) << std::endl;
std::cout << "Reduced polynomial leading to bad root: " << P << std::endl;
throw std::logic_error("Donezo.");
}
BOOST_MATH_ASSERT(i < roots.size());
roots[i] = r;
++i;
polynomial<Complex> q{-r, {1,0}};
// This optimization breaks at p = 11. I have no clue why.
// Unfortunate, because I expect it to be considerably more stable than
// repeatedly dividing by the complex root.
/*polynomial<Complex> q;
if (r.imag() > sqrt(std::numeric_limits<Real>::epsilon()))
{
// Then the complex conjugate is also a root:
using std::conj;
using std::norm;
BOOST_MATH_ASSERT(i < roots.size());
roots[i] = conj(r);
++i;
q = polynomial<Complex>({{norm(r), 0}, {-2*r.real(),0}, {1,0}});
}
else
{
// The imaginary part is numerical noise:
r.imag() = 0;
q = polynomial<Complex>({-r, {1,0}});
}*/
auto PR = quotient_remainder(P, q);
// I should validate that the remainder is small, but . . .
//std::cout << "Remainder = " << PR.second<< std::endl;
P = PR.first;
P_prime = P.prime();
}
std::vector<std::pair<Complex, Complex>> Qroots(p-1);
for (size_t i = 0; i < Qroots.size(); ++i)
{
Complex y = roots[i];
Complex z1 = static_cast<Complex>(1) - static_cast<Complex>(2)*y + static_cast<Complex>(2)*sqrt(y*(y-static_cast<Complex>(1)));
Complex z2 = static_cast<Complex>(1) - static_cast<Complex>(2)*y - static_cast<Complex>(2)*sqrt(y*(y-static_cast<Complex>(1)));
Qroots[i] = {z1, z2};
}
return Qroots;
}
template<class Complex>
std::vector<typename Complex::value_type> daubechies_coefficients(std::vector<std::pair<Complex, Complex>> const & Qroots)
{
typedef typename Complex::value_type Real;
size_t p = Qroots.size() + 1;
// Choose the minimum abs root; see Mallat, discussion just after equation 7.98
std::vector<Complex> chosen_roots(p-1);
for (size_t i = 0; i < p - 1; ++i)
{
if(norm(Qroots[i].first) <= 1)
{
chosen_roots[i] = Qroots[i].first;
}
else
{
BOOST_MATH_ASSERT(norm(Qroots[i].second) <= 1);
chosen_roots[i] = Qroots[i].second;
}
}
polynomial<Complex> R{1};
for (size_t i = 0; i < p-1; ++i)
{
Complex ak = chosen_roots[i];
R *= polynomial<Complex>({-ak/(static_cast<Complex>(1)-ak), static_cast<Complex>(1)/(static_cast<Complex>(1)-ak)});
}
polynomial<Complex> a{{half<Real>(), 0}, {half<Real>(),0}};
polynomial<Complex> poly = root_two<Real>()*pow(a, p)*R;
std::vector<Complex> result = poly.data();
// If we reverse, we get the Numerical Recipes and Daubechies convention.
// If we don't reverse, we get the Pywavelets and Mallat convention.
// I believe this is because of the sign convention on the DFT, which differs between Daubechies and Mallat.
// You implement a dot product in Daubechies/NR convention, and a convolution in PyWavelets/Mallat convention.
std::reverse(result.begin(), result.end());
std::vector<Real> h(result.size());
for (size_t i = 0; i < result.size(); ++i)
{
Complex r = result[i];
BOOST_MATH_ASSERT(r.imag() < sqrt(std::numeric_limits<Real>::epsilon()));
h[i] = r.real();
}
// Quick sanity check: We could check all vanishing moments, but that sum is horribly ill-conditioned too!
Real sum = 0;
Real scale = 0;
for (size_t i = 0; i < h.size(); ++i)
{
sum += h[i];
scale += h[i]*h[i];
}
BOOST_MATH_ASSERT(abs(scale -1) < sqrt(std::numeric_limits<Real>::epsilon()));
BOOST_MATH_ASSERT(abs(sum - root_two<Real>()) < sqrt(std::numeric_limits<Real>::epsilon()));
return h;
}
int main()
{
typedef boost::multiprecision::cpp_complex<500> Complex;
size_t p_max = 20;
std::ofstream fs{"daubechies_filters.hpp"};
fs << "/*\n"
<< " * Copyright Nick Thompson, 2019\n"
<< " * Use, modification and distribution are subject to the\n"
<< " * Boost Software License, Version 1.0. (See accompanying file\n"
<< " * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)\n"
<< " */\n"
<< "#ifndef BOOST_MATH_FILTERS_DAUBECHIES_HPP\n"
<< "#define BOOST_MATH_FILTERS_DAUBECHIES_HPP\n"
<< "#include <array>\n"
<< "#include <limits>\n"
<< "#include <boost/math/tools/big_constant.hpp>\n\n"
<< "namespace boost::math::filters {\n\n"
<< "template <typename Real, unsigned p>\n"
<< "constexpr std::array<Real, 2*p> daubechies_scaling_filter()\n"
<< "{\n"
<< " static_assert(p < " << p_max << ", \"Filter coefficients only implemented up to " << p_max - 1 << ".\");\n";
for(size_t p = 1; p < p_max; ++p)
{
fs << std::setprecision(std::numeric_limits<boost::multiprecision::cpp_bin_float_oct>::max_digits10);
auto roots = find_roots<Complex>(p);
auto h = daubechies_coefficients(roots);
fs << " if constexpr (p == " << p << ") {\n";
fs << " return {";
for (size_t i = 0; i < h.size() - 1; ++i) {
fs << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << h[i] << "), ";
}
fs << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << h[h.size()-1] << ") };\n";
fs << " }\n";
}
fs << "}\n\n";
fs << "template<class Real, size_t p>\n";
fs << "std::array<Real, 2*p> daubechies_wavelet_filter() {\n";
fs << " std::array<Real, 2*p> g;\n";
fs << " auto h = daubechies_scaling_filter<Real, p>();\n";
fs << " for (size_t i = 0; i < g.size(); i += 2)\n";
fs << " {\n";
fs << " g[i] = h[g.size() - i - 1];\n";
fs << " g[i+1] = -h[g.size() - i - 2];\n";
fs << " }\n";
fs << " return g;\n";
fs << "}\n\n";
fs << "} // namespaces\n";
fs << "#endif\n";
fs.close();
}
|