File: daubechies_scaling_plots.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (171 lines) | stat: -rw-r--r-- 6,457 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright Nick Thompson, 2020
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */
#include <iostream>
#include <boost/core/demangle.hpp>
#include <boost/hana/for_each.hpp>
#include <boost/hana/ext/std/integer_sequence.hpp>

#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions/daubechies_scaling.hpp>
#include <boost/math/tools/ulps_plot.hpp>
#include <quicksvg/graph_fn.hpp>


using boost::multiprecision::float128;
constexpr const int GRAPH_WIDTH = 300;

template<typename Real, int p>
void plot_phi(int grid_refinements = -1)
{
    auto phi = boost::math::daubechies_scaling<Real, p>();
    if (grid_refinements >= 0)
    {
        phi = boost::math::daubechies_scaling<Real, p>(grid_refinements);
    }
    Real a = 0;
    Real b = phi.support().second;
    std::string title = "Daubechies " + std::to_string(p) + " scaling function";
    title = "";
    std::string filename = "daubechies_" + std::to_string(p) + "_scaling.svg";
    int samples = 1024;
    quicksvg::graph_fn daub(a, b, title, filename, samples, GRAPH_WIDTH);
    daub.set_gridlines(8, 2*p-1);
    daub.set_stroke_width(1);
    daub.add_fn(phi);
    daub.write_all();
}

template<typename Real, int p>
void plot_dphi(int grid_refinements = -1)
{
    auto phi = boost::math::daubechies_scaling<Real, p>();
    if (grid_refinements >= 0)
    {
        phi = boost::math::daubechies_scaling<Real, p>(grid_refinements);
    }
    Real a = 0;
    Real b = phi.support().second;
    std::string title = "Daubechies " + std::to_string(p) + " scaling function derivative";
    title = "";
    std::string filename = "daubechies_" + std::to_string(p) + "_scaling_prime.svg";
    int samples = 1024;
    quicksvg::graph_fn daub(a, b, title, filename, samples, GRAPH_WIDTH);
    daub.set_stroke_width(1);
    daub.set_gridlines(8, 2*p-1);
    auto dphi = [phi](Real x)->Real { return phi.prime(x); };
    daub.add_fn(dphi);
    daub.write_all();
}

template<typename Real, int p>
void plot_convergence()
{
    auto phi0 = boost::math::daubechies_scaling<Real, p>(0);
    Real a = 0;
    Real b = phi0.support().second;
    std::string title = "Daubechies " + std::to_string(p) + " scaling at 0 (green), 1 (orange), 2 (red), and 24 (blue) grid refinements";
    title = "";
    std::string filename = "daubechies_" + std::to_string(p) + "_scaling_convergence.svg";

    quicksvg::graph_fn daub(a, b, title, filename, 1024, 900);
    daub.set_stroke_width(1);
    daub.set_gridlines(8, 2*p-1);

    daub.add_fn(phi0, "green");
    auto phi1 = boost::math::daubechies_scaling<Real, p>(1);
    daub.add_fn(phi1, "orange");
    auto phi2 = boost::math::daubechies_scaling<Real, p>(2);
    daub.add_fn(phi2, "red");

    auto phi21 = boost::math::daubechies_scaling<Real, p>(21);
    daub.add_fn(phi21);

    daub.write_all();
}

template<typename Real, int p>
void plot_condition_number()
{
    using std::abs;
    using std::log;
    static_assert(p >= 3, "p = 2 is not differentiable, so condition numbers cannot be effectively evaluated.");
    auto phi = boost::math::daubechies_scaling<Real, p>();
    Real a = std::sqrt(std::numeric_limits<Real>::epsilon());
    Real b = phi.support().second - 1000*std::sqrt(std::numeric_limits<Real>::epsilon());
    std::string title = "log10 of condition number of function evaluation for Daubechies " + std::to_string(p) + " scaling function.";
    title = "";
    std::string filename = "daubechies_" + std::to_string(p) + "_scaling_condition_number.svg";


    quicksvg::graph_fn daub(a, b, title, filename, 2048, GRAPH_WIDTH);
    daub.set_stroke_width(1);
    daub.set_gridlines(8, 2*p-1);

    auto cond = [&phi](Real x)
    {
        Real y = phi(x);
        Real dydx = phi.prime(x);
        Real z = abs(x*dydx/y);
        using std::isnan;
        if (z==0)
        {
            return Real(-1);
        }
        if (isnan(z))
        {
            // Graphing libraries don't like nan's:
            return Real(1);
        }
        return log10(z);
    };
    daub.add_fn(cond);
    daub.write_all();
}

template<typename CoarseReal, typename PreciseReal, int p, class PhiPrecise>
void do_ulp(int coarse_refinements, PhiPrecise phi_precise)
{
    auto phi_coarse = boost::math::daubechies_scaling<CoarseReal, p>(coarse_refinements);

    std::string title = std::to_string(p) + " vanishing moment ULP plot at " + std::to_string(coarse_refinements) + " refinements and " + boost::core::demangle(typeid(CoarseReal).name()) + " precision";
    title = "";

    std::string filename = "daubechies_" + std::to_string(p) + "_" + boost::core::demangle(typeid(CoarseReal).name()) + "_" + std::to_string(coarse_refinements) + "_refinements.svg";
    int samples = 20000;
    int clip = 10;
    int horizontal_lines = 8;
    int vertical_lines = 2*p - 1;
    auto [a, b] = phi_coarse.support();
    auto plot = boost::math::tools::ulps_plot<decltype(phi_precise), PreciseReal, CoarseReal>(phi_precise, a, b, samples);
    plot.clip(clip).width(GRAPH_WIDTH).horizontal_lines(horizontal_lines).vertical_lines(vertical_lines).ulp_envelope(false);

    plot.background_color("white").font_color("black");
    plot.add_fn(phi_coarse);
    plot.write(filename);
}


int main()
{
    boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){ plot_phi<double, i+2>(); });
    boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i){ plot_dphi<double, i+3>(); });
    boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i){ plot_condition_number<double, i+3>(); });
    boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){ plot_convergence<double, i+2>(); });

    using PreciseReal = float128;
    using CoarseReal = double;
    int precise_refinements = 23;
    constexpr const int p = 8;
    std::cout << "Computing precise scaling function in " << boost::core::demangle(typeid(PreciseReal).name()) << " precision.\n";
    auto phi_precise = boost::math::daubechies_scaling<PreciseReal, p>(precise_refinements);
    std::cout << "Beginning comparison with functions computed in " << boost::core::demangle(typeid(CoarseReal).name()) << " precision.\n";
    for (int i = 7; i <= precise_refinements-1; ++i)
    {
        std::cout << "\tCoarse refinement " << i << "\n";
        do_ulp<CoarseReal, PreciseReal, p>(i, phi_precise);
    }
}