1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*
* Copyright Nick Thompson, 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <iostream>
#include <boost/core/demangle.hpp>
#include <boost/hana/for_each.hpp>
#include <boost/hana/ext/std/integer_sequence.hpp>
#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions/daubechies_scaling.hpp>
#include <boost/math/tools/ulps_plot.hpp>
#include <quicksvg/graph_fn.hpp>
using boost::multiprecision::float128;
constexpr const int GRAPH_WIDTH = 300;
template<typename Real, int p>
void plot_phi(int grid_refinements = -1)
{
auto phi = boost::math::daubechies_scaling<Real, p>();
if (grid_refinements >= 0)
{
phi = boost::math::daubechies_scaling<Real, p>(grid_refinements);
}
Real a = 0;
Real b = phi.support().second;
std::string title = "Daubechies " + std::to_string(p) + " scaling function";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_scaling.svg";
int samples = 1024;
quicksvg::graph_fn daub(a, b, title, filename, samples, GRAPH_WIDTH);
daub.set_gridlines(8, 2*p-1);
daub.set_stroke_width(1);
daub.add_fn(phi);
daub.write_all();
}
template<typename Real, int p>
void plot_dphi(int grid_refinements = -1)
{
auto phi = boost::math::daubechies_scaling<Real, p>();
if (grid_refinements >= 0)
{
phi = boost::math::daubechies_scaling<Real, p>(grid_refinements);
}
Real a = 0;
Real b = phi.support().second;
std::string title = "Daubechies " + std::to_string(p) + " scaling function derivative";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_scaling_prime.svg";
int samples = 1024;
quicksvg::graph_fn daub(a, b, title, filename, samples, GRAPH_WIDTH);
daub.set_stroke_width(1);
daub.set_gridlines(8, 2*p-1);
auto dphi = [phi](Real x)->Real { return phi.prime(x); };
daub.add_fn(dphi);
daub.write_all();
}
template<typename Real, int p>
void plot_convergence()
{
auto phi0 = boost::math::daubechies_scaling<Real, p>(0);
Real a = 0;
Real b = phi0.support().second;
std::string title = "Daubechies " + std::to_string(p) + " scaling at 0 (green), 1 (orange), 2 (red), and 24 (blue) grid refinements";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_scaling_convergence.svg";
quicksvg::graph_fn daub(a, b, title, filename, 1024, 900);
daub.set_stroke_width(1);
daub.set_gridlines(8, 2*p-1);
daub.add_fn(phi0, "green");
auto phi1 = boost::math::daubechies_scaling<Real, p>(1);
daub.add_fn(phi1, "orange");
auto phi2 = boost::math::daubechies_scaling<Real, p>(2);
daub.add_fn(phi2, "red");
auto phi21 = boost::math::daubechies_scaling<Real, p>(21);
daub.add_fn(phi21);
daub.write_all();
}
template<typename Real, int p>
void plot_condition_number()
{
using std::abs;
using std::log;
static_assert(p >= 3, "p = 2 is not differentiable, so condition numbers cannot be effectively evaluated.");
auto phi = boost::math::daubechies_scaling<Real, p>();
Real a = std::sqrt(std::numeric_limits<Real>::epsilon());
Real b = phi.support().second - 1000*std::sqrt(std::numeric_limits<Real>::epsilon());
std::string title = "log10 of condition number of function evaluation for Daubechies " + std::to_string(p) + " scaling function.";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_scaling_condition_number.svg";
quicksvg::graph_fn daub(a, b, title, filename, 2048, GRAPH_WIDTH);
daub.set_stroke_width(1);
daub.set_gridlines(8, 2*p-1);
auto cond = [&phi](Real x)
{
Real y = phi(x);
Real dydx = phi.prime(x);
Real z = abs(x*dydx/y);
using std::isnan;
if (z==0)
{
return Real(-1);
}
if (isnan(z))
{
// Graphing libraries don't like nan's:
return Real(1);
}
return log10(z);
};
daub.add_fn(cond);
daub.write_all();
}
template<typename CoarseReal, typename PreciseReal, int p, class PhiPrecise>
void do_ulp(int coarse_refinements, PhiPrecise phi_precise)
{
auto phi_coarse = boost::math::daubechies_scaling<CoarseReal, p>(coarse_refinements);
std::string title = std::to_string(p) + " vanishing moment ULP plot at " + std::to_string(coarse_refinements) + " refinements and " + boost::core::demangle(typeid(CoarseReal).name()) + " precision";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_" + boost::core::demangle(typeid(CoarseReal).name()) + "_" + std::to_string(coarse_refinements) + "_refinements.svg";
int samples = 20000;
int clip = 10;
int horizontal_lines = 8;
int vertical_lines = 2*p - 1;
auto [a, b] = phi_coarse.support();
auto plot = boost::math::tools::ulps_plot<decltype(phi_precise), PreciseReal, CoarseReal>(phi_precise, a, b, samples);
plot.clip(clip).width(GRAPH_WIDTH).horizontal_lines(horizontal_lines).vertical_lines(vertical_lines).ulp_envelope(false);
plot.background_color("white").font_color("black");
plot.add_fn(phi_coarse);
plot.write(filename);
}
int main()
{
boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){ plot_phi<double, i+2>(); });
boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i){ plot_dphi<double, i+3>(); });
boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i){ plot_condition_number<double, i+3>(); });
boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){ plot_convergence<double, i+2>(); });
using PreciseReal = float128;
using CoarseReal = double;
int precise_refinements = 23;
constexpr const int p = 8;
std::cout << "Computing precise scaling function in " << boost::core::demangle(typeid(PreciseReal).name()) << " precision.\n";
auto phi_precise = boost::math::daubechies_scaling<PreciseReal, p>(precise_refinements);
std::cout << "Beginning comparison with functions computed in " << boost::core::demangle(typeid(CoarseReal).name()) << " precision.\n";
for (int i = 7; i <= precise_refinements-1; ++i)
{
std::cout << "\tCoarse refinement " << i << "\n";
do_ulp<CoarseReal, PreciseReal, p>(i, phi_precise);
}
}
|