1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
// distribution_construction.cpp
// Copyright Paul A. Bristow 2007, 2010, 2012.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Caution: this file contains Quickbook markup as well as code
// and comments, don't change any of the special comment markups!
#ifdef _MSC_VER
# pragma warning (disable : 4996) // disable -D_SCL_SECURE_NO_WARNINGS C++ 'Checked Iterators'
#endif
#include <iostream>
#include <exception>
//[distribution_construction_1
/*`
The structure of distributions is rather different from some other statistical libraries,
for example, those written in less object-oriented language like FORTRAN and C that
provide a few arguments to each free function.
Boost.Math library instead provides each distribution as a template C++ class.
A distribution is constructed with a few arguments, and then
member and non-member functions are used to find values of the
distribution, often a function of a random variate.
For this demonstration, first we need some includes to access the
negative binomial distribution (and the binomial, beta and gamma distributions too).
To demonstrate the use with a high precision User-defined floating-point type
`cpp_bin_float`, we also need an include from Boost.Multiprecision.
(We could equally well have used a `cpp_dec_float` multiprecision type).
We choose a typedef `cpp_bin_float_50` to provide a 50 decimal digit type,
but we could equally have chosen at 128-bit type `cpp_bin_float_quad`,
or on some platforms `__float128`, providing about 35 decimal digits.
*/
#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
using boost::math::negative_binomial_distribution; // default type is double.
using boost::math::negative_binomial; // typedef provides default type is double.
#include <boost/math/distributions/binomial.hpp> // for binomial_distribution.
#include <boost/math/distributions/beta.hpp> // for beta_distribution.
#include <boost/math/distributions/gamma.hpp> // for gamma_distribution.
#include <boost/math/distributions/normal.hpp> // for normal_distribution.
#include <boost/multiprecision/cpp_bin_float.hpp> // for cpp_bin_float_50
/*`
Several examples of constructing distributions follow:
*/
//] [/distribution_construction_1 end of Quickbook in C++ markup]
int main()
{
try
{
//[distribution_construction_2
/*`
First, a negative binomial distribution with 8 successes
and a success fraction 0.25, 25% or 1 in 4, is constructed like this:
*/
boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);
/*`
But this is inconveniently long, so we might be tempted to write
*/
using namespace boost::math;
/*`
but this might risk ambiguity with names in `std random` so
[*much] better is explicit `using boost::math::` statements, for example:
*/
using boost::math::negative_binomial_distribution;
/*`
and we can still reduce typing.
Since the vast majority of applications use will be using `double` precision,
the template argument to the distribution (`RealType`) defaults
to type `double`, so we can also write:
*/
negative_binomial_distribution<> mydist9(8., 0.25); // Uses default `RealType = double`.
/*`
But the name `negative_binomial_distribution` is still inconveniently long,
so, for most distributions, a convenience `typedef` is provided, for example:
typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
[caution
This convenience typedef is [*not provided] if a clash would occur
with the name of a function; currently only `beta` and `gamma`
fall into this category.
]
So, after a using statement,
*/
using boost::math::negative_binomial;
/*`
we have a convenient typedef to `negative_binomial_distribution<double>`:
*/
negative_binomial mydist(8., 0.25);
/*`
Some more examples using the convenience typedef:
*/
negative_binomial mydist10(5., 0.4); // Both arguments double.
/*`
And automatic conversion of arguments takes place, so you can use integers and floats:
*/
negative_binomial mydist11(5, 0.4); // Using provided typedef of type double, and int and double arguments.
/*`
This is probably the most common usage.
Other combination are possible too:
*/
negative_binomial mydist12(5., 0.4F); // Double and float arguments.
negative_binomial mydist13(5, 1); // Both arguments integer.
/*`
Similarly for most other distributions like the binomial.
*/
binomial mybinomial(1, 0.5); // is more concise than
binomial_distribution<> mybinomd1(1, 0.5);
/*`
For cases when the typdef distribution name would clash with a math special function
(currently only beta and gamma)
the typedef is deliberately not provided, and the longer version of the name
must be used, so for example, do not use:
using boost::math::beta;
beta mybetad0(1, 0.5); // Error beta is a math FUNCTION!
Which produces the error messages:
[pre
error C2146: syntax error : missing ';' before identifier 'mybetad0'
warning C4551: function call missing argument list
error C3861: 'mybetad0': identifier not found
]
Instead you should use:
*/
using boost::math::beta_distribution;
beta_distribution<> mybetad1(1, 0.5);
/*`
or for the gamma distribution:
*/
gamma_distribution<> mygammad1(1, 0.5);
/*`
We can, of course, still provide the type explicitly thus:
*/
// Explicit double precision: both arguments are double:
negative_binomial_distribution<double> mydist1(8., 0.25);
// Explicit float precision, double arguments are truncated to float:
negative_binomial_distribution<float> mydist2(8., 0.25);
// Explicit float precision, integer & double arguments converted to float:
negative_binomial_distribution<float> mydist3(8, 0.25);
// Explicit float precision, float arguments, so no conversion:
negative_binomial_distribution<float> mydist4(8.F, 0.25F);
// Explicit float precision, integer arguments promoted to float.
negative_binomial_distribution<float> mydist5(8, 1);
// Explicit double precision:
negative_binomial_distribution<double> mydist6(5., 0.4);
// Explicit long double precision:
negative_binomial_distribution<long double> mydist7(8., 0.25);
/*`
And you can use your own template RealType,
for example, `boost::math::cpp_bin_float_50` (an arbitrary 50 decimal digits precision type),
then we can write:
*/
using namespace boost::multiprecision;
negative_binomial_distribution<cpp_bin_float_50> mydist8(8, 0.25);
// `integer` arguments are promoted to your RealType exactly, but
// `double` argument are converted to RealType,
// most likely losing precision!
// So DON'T be tempted to write the 'obvious':
negative_binomial_distribution<cpp_bin_float_50> mydist20(8, 0.23456789012345678901234567890);
// to avoid truncation of second parameter to `0.2345678901234567` and loss of precision.
// Instead pass a quoted decimal digit string:
negative_binomial_distribution<cpp_bin_float_50> mydist21(8, cpp_bin_float_50("0.23456789012345678901234567890") );
// Ensure that all potentially significant digits are shown.
std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);
//
cpp_bin_float_50 x("1.23456789012345678901234567890");
std::cout << pdf(mydist8, x) << std::endl;
/*` showing 0.00012630010495970320103876754721976419438231705359935
0.00012630010495970320103876754721976419438231528547467
[warning When using multiprecision, it is all too easy to get accidental truncation!]
For example, if you write
*/
std::cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl;
/*`
showing 0.00012630010495970318465064569310967179576805651692929,
which is wrong at about the 17th decimal digit!
This is because the value provided is truncated to a `double`, effectively
`double x = 1.23456789012345678901234567890;`
Then the now `double x` is passed to function `pdf`,
and this truncated `double` value is finally promoted to `cpp_bin_float_50`.
Another way of quietly getting the wrong answer is to write:
*/
std::cout << pdf(mydist8, cpp_bin_float_50(1.23456789012345678901234567890)) << std::endl;
/*`
A correct way from a multi-digit string value is
*/
std::cout << pdf(mydist8, cpp_bin_float_50("1.23456789012345678901234567890")) << std::endl;
/*`
[tip Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.]
*/
/*`
[h4 Default arguments to distribution constructors.]
Note that default constructor arguments are only provided for some distributions.
So if you wrongly assume a default argument, you will get an error message, for example:
negative_binomial_distribution<> mydist8;
[pre error C2512 no appropriate default constructor available.]
No default constructors are provided for the `negative binomial` distribution,
because it is difficult to chose any sensible default values for this distribution.
For other distributions, like the normal distribution,
it is obviously very useful to provide 'standard'
defaults for the mean (zero) and standard deviation (unity) thus:
normal_distribution(RealType mean = 0, RealType sd = 1);
So in this case we can more tersely write:
*/
using boost::math::normal;
normal norm1; // Standard normal distribution N[0,1].
normal norm2(2); // Mean = 2, std deviation = 1.
normal norm3(2, 3); // Mean = 2, std deviation = 3.
}
catch(std::exception &ex)
{
std::cout << ex.what() << std::endl;
}
return 0;
} // int main()
/*`There is no useful output from this demonstration program, of course. */
//] [/end of distribution_construction_2]
/*
//[distribution_construction_output
0.00012630010495970320103876754721976419438231705359935
0.00012630010495970318465064569310967179576805651692929
0.00012630010495970318465064569310967179576805651692929
0.00012630010495970320103876754721976419438231705359935
//] [/distribution_construction_output]
0.00012630010495970320103876754721976419438231528547467
0.0001263001049597031846506456931096717957680547488046
0.0001263001049597031846506456931096717957680547488046
0.00012630010495970320103876754721976419438231528547467
*/
|