1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Copyright Paul A. Bristow 2013.
// Copyright Christopher Kormanyos 2012, 2013.
// Copyright John Maddock 2013.
// This file is written to be included from a Quickbook .qbk document.
// It can be compiled by the C++ compiler, and run. Any output can
// also be added here as comment or included or pasted in elsewhere.
// Caution: this file contains Quickbook markup as well as code
// and comments: don't change any of the special comment markups!
#ifdef _MSC_VER
# pragma warning (disable : 4996) // -D_SCL_SECURE_NO_WARNINGS.
#endif
//[fft_sines_table_example_1
/*`[h5 Using Boost.Multiprecision to generate a high-precision array of sine coefficients for use with FFT.]
The Boost.Multiprecision library can be used for computations requiring precision
exceeding that of standard built-in types such as `float`, `double`
and `long double`. For extended-precision calculations, Boost.Multiprecision
supplies a template data type called `cpp_bin_float`. The number of decimal
digits of precision is fixed at compile-time via a template parameter.
One often needs to compute tables of numbers in mathematical software.
To avoid the
[@https://en.wikipedia.org/wiki/Rounding#Table-maker's_dilemma Table-maker's dilemma]
it is necessary to use a higher precision type to compute the table values so that they have
the nearest representable bit-pattern for the type, say `double`, of the table value.
This example is a program `fft_since_table.cpp` that writes a header file `sines.hpp`
containing an array of sine coefficients for use with a Fast Fourier Transform (FFT),
that can be included by the FFT program.
To use Boost.Multiprecision's high-precision floating-point types and constants, we need some includes:
*/
#include <boost/math/constants/constants.hpp>
// using boost::math::constants::pi;
#include <boost/multiprecision/cpp_bin_float.hpp> // for
// using boost::multiprecision::cpp_bin_float and
// using boost::multiprecision::cpp_bin_float_50;
// using boost::multiprecision::cpp_bin_float_quad;
#include <boost/array.hpp> // or <array> for std::array
#include <iostream>
#include <limits>
#include <vector>
#include <algorithm>
#include <iomanip>
#include <iterator>
#include <fstream>
/*`First, this example defines a prolog text string which is a C++ comment with the program licence, copyright etc.
(You would of course, tailor this to your needs, including *your* copyright claim).
This will appear at the top of the written header file `sines.hpp`.
*/
//] [fft_sines_table_example_1]
static const char* prolog =
{
"// Use, modification and distribution are subject to the\n"
"// Boost Software License, Version 1.0.\n"
"// (See accompanying file LICENSE_1_0.txt\n"
"// or copy at ""http://www.boost.org/LICENSE_1_0.txt)\n\n"
"// Copyright A N Other, 2019.\n\n"
};
//[fft_sines_table_example_2
using boost::multiprecision::cpp_bin_float_50;
using boost::math::constants::pi;
//] [fft_sines_table_example_2]
// VS 2010 (wrongly) requires these at file scope, not local scope in `main`.
// This program also requires `-std=c++11` option to compile using Clang and GCC.
int main()
{
//[fft_sines_table_example_3
/*`A fast Fourier transform (FFT), for example, may use a table of the values of
sin(([pi]/2[super n]) in its implementation details. In order to maximize the precision in
the FFT implementation, the precision of the tabulated trigonometric values
should exceed that of the built-in floating-point type used in the FFT.
The sample below computes a table of the values of sin([pi]/2[super n])
in the range 1 <= n <= 31.
This program makes use of, among other program elements, the data type
`boost::multiprecision::cpp_bin_float_50`
for a precision of 50 decimal digits from Boost.Multiprecision,
the value of constant [pi] retrieved from Boost.Math,
guaranteed to be initialized with the very last bit of precision for the type,
here `cpp_bin_float_50`,
and a C++11 lambda function combined with `std::for_each()`.
*/
/*`define the number of values (32) in the array of sines.
*/
std::size_t size = 32U;
//cpp_bin_float_50 p = pi<cpp_bin_float_50>();
cpp_bin_float_50 p = boost::math::constants::pi<cpp_bin_float_50>();
std::vector <cpp_bin_float_50> sin_values (size);
unsigned n = 1U;
// Generate the sine values.
std::for_each
(
sin_values.begin (),
sin_values.end (),
[&n](cpp_bin_float_50& y)
{
y = sin( pi<cpp_bin_float_50>() / pow(cpp_bin_float_50 (2), n));
++n;
}
);
/*`Define the floating-point type for the generated file, either built-in
`double, `float, or `long double`, or a user defined type like `cpp_bin_float_50`.
*/
std::string fp_type = "double";
std::cout << "Generating an `std::array` or `std::array` for floating-point type: "
<< fp_type << ". " << std::endl;
/*`By default, output would only show the standard 6 decimal digits,
so set precision to show enough significant digits for the chosen floating-point type.
For `cpp_bin_float_50` is 50. (50 decimal digits should be ample for most applications).
*/
std::streamsize precision = std::numeric_limits<cpp_bin_float_50>::digits10;
std::cout << "Sines table precision is " << precision << " decimal digits. " << std::endl;
/*`Of course, one could also choose a lower precision for the table values, for example,
`std::streamsize precision = std::numeric_limits<cpp_bin_float_quad>::max_digits10;`
128-bit 'quad' precision of 36 decimal digits would be sufficient
for the most precise current `long double` implementations using 128-bit.
In general, it should be a couple of decimal digits more (guard digits) than
`std::numeric_limits<RealType>::max_digits10` for the target system floating-point type.
(If the implementation does not provide `max_digits10`, the the Kahan formula
`std::numeric_limits<RealType>::digits * 3010/10000 + 2` can be used instead).
The compiler will read these values as decimal digits strings and
use the nearest representation for the floating-point type.
Now output all the sine table, to a file of your chosen name.
*/
const char sines_name[] = "sines.hpp"; // Assuming in same directory as .exe
std::ofstream fout(sines_name, std::ios_base::out); // Creates if no file exists,
// & uses default overwrite/ ios::replace.
if (fout.is_open() == false)
{ // failed to open OK!
std::cout << "Open file " << sines_name << " failed!" << std::endl;
return EXIT_FAILURE;
}
else
{ // Write prolog etc as a C++ comment.
std::cout << "Open file " << sines_name << " for output OK." << std::endl;
fout << prolog
<< "// Table of " << sin_values.size() << " values with "
<< precision << " decimal digits precision,\n"
"// generated by program fft_sines_table.cpp.\n" << std::endl;
fout << "#include <array> // std::array" << std::endl;
// Write the table of sines as a C++ array.
fout << "\nstatic const std::array<double, " << size << "> sines =\n"
"{{\n"; // 2nd { needed for some old GCC compiler versions.
fout.precision(precision);
for (unsigned int i = 0U; ;)
{
fout << " " << sin_values[i];
if (i == sin_values.size()-1)
{ // next is last value.
fout << "\n}}; // array sines\n"; // 2nd } needed for some old GCC compiler versions.
break;
}
else
{
fout << ",\n";
i++;
}
} // for
fout.close();
std::cout << "Closed file " << sines_name << " for output." << std::endl;
}
//`The output file generated can be seen at [@../../example/sines.hpp]
//] [/fft_sines_table_example_3]
return EXIT_SUCCESS;
} // int main()
/*
//[fft_sines_table_example_output
The printed table is:
1
0.70710678118654752440084436210484903928483593768847
0.38268343236508977172845998403039886676134456248563
0.19509032201612826784828486847702224092769161775195
0.098017140329560601994195563888641845861136673167501
0.049067674327418014254954976942682658314745363025753
0.024541228522912288031734529459282925065466119239451
0.012271538285719926079408261951003212140372319591769
0.0061358846491544753596402345903725809170578863173913
0.003067956762965976270145365490919842518944610213452
0.0015339801862847656123036971502640790799548645752374
0.00076699031874270452693856835794857664314091945206328
0.00038349518757139558907246168118138126339502603496474
0.00019174759731070330743990956198900093346887403385916
9.5873799095977345870517210976476351187065612851145e-05
4.7936899603066884549003990494658872746866687685767e-05
2.3968449808418218729186577165021820094761474895673e-05
1.1984224905069706421521561596988984804731977538387e-05
5.9921124526424278428797118088908617299871778780951e-06
2.9960562263346607504548128083570598118251878683408e-06
1.4980281131690112288542788461553611206917585861527e-06
7.4901405658471572113049856673065563715595930217207e-07
3.7450702829238412390316917908463317739740476297248e-07
1.8725351414619534486882457659356361712045272098287e-07
9.3626757073098082799067286680885620193236507169473e-08
4.681337853654909269511551813854009695950362701667e-08
2.3406689268274552759505493419034844037886207223779e-08
1.1703344634137277181246213503238103798093456639976e-08
5.8516723170686386908097901008341396943900085051757e-09
2.9258361585343193579282304690689559020175857150074e-09
1.4629180792671596805295321618659637103742615227834e-09
*/
//] [/fft_sines_table_example_output]
//[fft_sines_table_example_check
/*`
The output can be copied as text and readily integrated into a given source
code. Alternatively, the output can be written to a text or even be used
within a self-written automatic code generator as this example.
A computer algebra system can be used to verify the results obtained from
Boost.Math and Boost.Multiprecision. For example, the __Mathematica
computer algebra system can obtain a similar table with the command:
Table[N[Sin[Pi / (2^n)], 50], {n, 1, 31, 1}]
The __WolframAlpha computational knowledge engine can also be used to generate
this table. The same command can be pasted into the compute box.
*/
//] [/fft_sines_table_example_check]
|