1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
//!file
//! \brief floating-point comparison from Boost.Test
// Copyright Paul A. Bristow 2015.
// Copyright John Maddock 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!
#include <boost/math/special_functions/relative_difference.hpp>
#include <boost/math/special_functions/next.hpp>
#include <iostream>
#include <limits> // for std::numeric_limits<T>::epsilon().
int main()
{
std::cout << "Compare floats using Boost.Math functions/classes" << std::endl;
//[compare_floats_using
/*`Some using statements will ensure that the functions we need are accessible.
*/
using namespace boost::math;
//`or
using boost::math::relative_difference;
using boost::math::epsilon_difference;
using boost::math::float_next;
using boost::math::float_prior;
//] [/compare_floats_using]
//[compare_floats_example_1
/*`The following examples display values with all possibly significant digits.
Newer compilers should provide `std::numeric_limits<FPT>::max_digits10`
for this purpose, and here we use `float` precision where `max_digits10` = 9
to avoid displaying a distracting number of decimal digits.
[note Older compilers can use this formula to calculate `max_digits10`
from `std::numeric_limits<FPT>::digits10`:
__spaces `int max_digits10 = 2 + std::numeric_limits<FPT>::digits10 * 3010/10000;`
] [/note]
One can set the display including all trailing zeros
(helpful for this example to show all potentially significant digits),
and also to display `bool` values as words rather than integers:
*/
std::cout.precision(std::numeric_limits<float>::max_digits10);
std::cout << std::boolalpha << std::showpoint << std::endl;
//] [/compare_floats_example_1]
//[compare_floats_example_2]
/*`
When comparing values that are ['quite close] or ['approximately equal],
we could use either `float_distance` or `relative_difference`/`epsilon_difference`, for example
with type `float`, these two values are adjacent to each other:
*/
float a = 1;
float b = 1 + std::numeric_limits<float>::epsilon();
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
std::cout << "float_distance = " << float_distance(a, b) << std::endl;
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
/*`
Which produces the output:
[pre
a = 1.00000000
b = 1.00000012
float_distance = 1.00000000
relative_difference = 1.19209290e-007
epsilon_difference = 1.00000000
]
*/
//] [/compare_floats_example_2]
//[compare_floats_example_3]
/*`
In the example above, it just so happens that the edit distance as measured by `float_distance`, and the
difference measured in units of epsilon were equal. However, due to the way floating point
values are represented, that is not always the case:*/
a = 2.0f / 3.0f; // 2/3 inexactly represented as a float
b = float_next(float_next(float_next(a))); // 3 floating point values above a
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
std::cout << "float_distance = " << float_distance(a, b) << std::endl;
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
/*`
Which produces the output:
[pre
a = 0.666666687
b = 0.666666865
float_distance = 3.00000000
relative_difference = 2.68220901e-007
epsilon_difference = 2.25000000
]
There is another important difference between `float_distance` and the
`relative_difference/epsilon_difference` functions in that `float_distance`
returns a signed result that reflects which argument is larger in magnitude,
where as `relative_difference/epsilon_difference` simply return an unsigned
value that represents how far apart the values are. For example if we swap
the order of the arguments:
*/
std::cout << "float_distance = " << float_distance(b, a) << std::endl;
std::cout << "relative_difference = " << relative_difference(b, a) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(b, a) << std::endl;
/*`
The output is now:
[pre
float_distance = -3.00000000
relative_difference = 2.68220901e-007
epsilon_difference = 2.25000000
]
*/
//] [/compare_floats_example_3]
//[compare_floats_example_4]
/*`
Zeros are always treated as equal, as are infinities as long as they have the same sign:*/
a = 0;
b = -0; // signed zero
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
a = b = std::numeric_limits<float>::infinity();
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
std::cout << "relative_difference = " << relative_difference(a, -b) << std::endl;
/*`
Which produces the output:
[pre
relative_difference = 0.000000000
relative_difference = 0.000000000
relative_difference = 3.40282347e+038
]
*/
//] [/compare_floats_example_4]
//[compare_floats_example_5]
/*`
Note that finite values are always infinitely far away from infinities even if those finite values are very large:*/
a = (std::numeric_limits<float>::max)();
b = std::numeric_limits<float>::infinity();
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
/*`
Which produces the output:
[pre
a = 3.40282347e+038
b = 1.#INF0000
relative_difference = 3.40282347e+038
epsilon_difference = 3.40282347e+038
]
*/
//] [/compare_floats_example_5]
//[compare_floats_example_6]
/*`
Finally, all denormalized values and zeros are treated as being effectively equal:*/
a = std::numeric_limits<float>::denorm_min();
b = a * 2;
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
std::cout << "float_distance = " << float_distance(a, b) << std::endl;
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
a = 0;
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
std::cout << "float_distance = " << float_distance(a, b) << std::endl;
std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
/*`
Which produces the output:
[pre
a = 1.40129846e-045
b = 2.80259693e-045
float_distance = 1.00000000
relative_difference = 0.000000000
epsilon_difference = 0.000000000
a = 0.000000000
b = 2.80259693e-045
float_distance = 2.00000000
relative_difference = 0.000000000
epsilon_difference = 0.000000000]
Notice how, in the above example, two denormalized values that are a factor of 2 apart are
none the less only one representation apart!
*/
//] [/compare_floats_example_6]
#if 0
//[old_compare_floats_example_3
//`The simplest use is to compare two values with a tolerance thus:
bool is_close = is_close_to(1.F, 1.F + epsilon, epsilon); // One epsilon apart is close enough.
std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // true
is_close = is_close_to(1.F, 1.F + 2 * epsilon, epsilon); // Two epsilon apart isn't close enough.
std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // false
/*`
[note The type FPT of the tolerance and the type of the values [*must match].
So `is_close(0.1F, 1., 1.)` will fail to compile because "template parameter 'FPT' is ambiguous".
Always provide the same type, using `static_cast<FPT>` if necessary.]
*/
/*`An instance of class `close_at_tolerance` is more convenient
when multiple tests with the same conditions are planned.
A class that stores a tolerance of three epsilon (and the default ['strong] test) is:
*/
close_at_tolerance<float> three_rounds(3 * epsilon); // 'strong' by default.
//`and we can confirm these settings:
std::cout << "fraction_tolerance = "
<< three_rounds.fraction_tolerance()
<< std::endl; // +3.57627869e-007
std::cout << "strength = "
<< (three_rounds.strength() == FPC_STRONG ? "strong" : "weak")
<< std::endl; // strong
//`To start, let us use two values that are truly equal (having identical bit patterns)
float a = 1.23456789F;
float b = 1.23456789F;
//`and make a comparison using our 3*epsilon `three_rounds` functor:
bool close = three_rounds(a, b);
std::cout << "three_rounds(a, b) = " << close << std::endl; // true
//`Unsurprisingly, the result is true, and the failed fraction is zero.
std::cout << "failed_fraction = " << three_rounds.failed_fraction() << std::endl;
/*`To get some nearby values, it is convenient to use the Boost.Math __next_float functions,
for which we need an include
#include <boost/math/special_functions/next.hpp>
and some using declarations:
*/
using boost::math::float_next;
using boost::math::float_prior;
using boost::math::nextafter;
using boost::math::float_distance;
//`To add a few __ulp to one value:
b = float_next(a); // Add just one ULP to a.
b = float_next(b); // Add another one ULP.
b = float_next(b); // Add another one ULP.
// 3 epsilon would pass.
b = float_next(b); // Add another one ULP.
//`and repeat our comparison:
close = three_rounds(a, b);
std::cout << "three_rounds(a, b) = " << close << std::endl; // false
std::cout << "failed_fraction = " << three_rounds.failed_fraction()
<< std::endl; // abs(u-v) / abs(v) = 3.86237957e-007
//`We can also 'measure' the number of bits different using the `float_distance` function:
std::cout << "float_distance = " << float_distance(a, b) << std::endl; // 4
/*`Now consider two values that are much further apart
than one might expect from ['computational noise],
perhaps the result of two measurements of some physical property like length
where an uncertainty of a percent or so might be expected.
*/
float fp1 = 0.01000F;
float fp2 = 0.01001F; // Slightly different.
float tolerance = 0.0001F;
close_at_tolerance<float> strong(epsilon); // Default is strong.
bool rs = strong(fp1, fp2);
std::cout << "strong(fp1, fp2) is " << rs << std::endl;
//`Or we could contrast using the ['weak] criterion:
close_at_tolerance<float> weak(epsilon, FPC_WEAK); // Explicitly weak.
bool rw = weak(fp1, fp2); //
std::cout << "weak(fp1, fp2) is " << rw << std::endl;
//`We can also construct, setting tolerance and strength, and compare in one statement:
std::cout << a << " #= " << b << " is "
<< close_at_tolerance<float>(epsilon, FPC_STRONG)(a, b) << std::endl;
std::cout << a << " ~= " << b << " is "
<< close_at_tolerance<float>(epsilon, FPC_WEAK)(a, b) << std::endl;
//`but this has little advantage over using function `is_close_to` directly.
//] [/old_compare_floats_example_3]
/*When the floating-point values become very small and near zero, using
//a relative test becomes unhelpful because one is dividing by zero or tiny,
//Instead, an absolute test is needed, comparing one (or usually both) values with zero,
//using a tolerance.
//This is provided by the `small_with_tolerance` class and `is_small` function.
namespace boost {
namespace math {
namespace fpc {
template<typename FPT>
class small_with_tolerance
{
public:
// Public typedefs.
typedef bool result_type;
// Constructor.
explicit small_with_tolerance(FPT tolerance); // tolerance >= 0
// Functor
bool operator()(FPT value) const; // return true if <= absolute tolerance (near zero).
};
template<typename FPT>
bool
is_small(FPT value, FPT tolerance); // return true if value <= absolute tolerance (near zero).
}}} // namespaces.
/*`
[note The type FPT of the tolerance and the type of the value [*must match].
So `is_small(0.1F, 0.000001)` will fail to compile because "template parameter 'FPT' is ambiguous".
Always provide the same type, using `static_cast<FPT>` if necessary.]
A few values near zero are tested with varying tolerance below.
*/
//[compare_floats_small_1
float c = 0;
std::cout << "0 is_small " << is_small(c, epsilon) << std::endl; // true
c = std::numeric_limits<float>::denorm_min(); // 1.40129846e-045
std::cout << "denorm_ min =" << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true
c = (std::numeric_limits<float>::min)(); // 1.17549435e-038
std::cout << "min = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true
c = 1 * epsilon; // 1.19209290e-007
std::cout << "epsilon = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // false
c = 1 * epsilon; // 1.19209290e-007
std::cout << "2 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // true
c = 2 * epsilon; //2.38418579e-007
std::cout << "4 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // false
c = 0.00001F;
std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true
c = -0.00001F;
std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true
/*`Using the class `small_with_tolerance` allows storage of the tolerance,
convenient if you make repeated tests with the same tolerance.
*/
small_with_tolerance<float>my_test(0.01F);
std::cout << "my_test(0.001F) is " << my_test(0.001F) << std::endl; // true
std::cout << "my_test(0.001F) is " << my_test(0.01F) << std::endl; // false
//] [/compare_floats_small_1]
#endif
return 0;
} // int main()
/*
Example output is:
//[compare_floats_output
Compare floats using Boost.Test functions/classes
float epsilon = 1.19209290e-007
is_close_to(1.F, 1.F + epsilon, epsilon); is true
is_close_to(1.F, 1.F + epsilon, epsilon); is false
fraction_tolerance = 3.57627869e-007
strength = strong
three_rounds(a, b) = true
failed_fraction = 0.000000000
three_rounds(a, b) = false
failed_fraction = 3.86237957e-007
float_distance = 4.00000000
strong(fp1, fp2) is false
weak(fp1, fp2) is false
1.23456788 #= 1.23456836 is false
1.23456788 ~= 1.23456836 is false
0 is_small true
denorm_ min =1.40129846e-045, is_small is true
min = 1.17549435e-038, is_small is true
epsilon = 1.19209290e-007, is_small is false
2 epsilon = 1.19209290e-007, is_small is true
4 epsilon = 2.38418579e-007, is_small is false
0.00001 = 9.99999975e-006, is_small is true
0.00001 = -9.99999975e-006, is_small is true
my_test(0.001F) is true
my_test(0.001F) is false//] [/compare_floats_output]
*/
|