1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
// Copyright Paul A. Bristow 2016
// Copyright John Z. Maddock 2016
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http ://www.boost.org/LICENSE_1_0.txt).
/*! \brief Graph showing use of Lambert W function to compute current
through a diode-connected transistor with preset series resistance.
\details T. C. Banwell and A. Jayakumar,
Exact analytical solution of current flow through diode with series resistance,
Electron Letters, 36(4):291-2 (2000).
DOI: doi.org/10.1049/el:20000301
The current through a diode connected NPN bipolar junction transistor (BJT)
type 2N2222 (See https://en.wikipedia.org/wiki/2N2222 and
https://www.fairchildsemi.com/datasheets/PN/PN2222.pdf Datasheet)
was measured, for a voltage between 0.3 to 1 volt, see Fig 2 for a log plot, showing a knee visible at about 0.6 V.
The transistor parameter I sat was estimated to be 25 fA and the ideality factor = 1.0.
The intrinsic emitter resistance re was estimated from the rsat = 0 data to be 0.3 ohm.
The solid curves in Figure 2 are calculated using equation 5 with rsat included with re.
http://www3.imperial.ac.uk/pls/portallive/docs/1/7292572.PDF
*/
#ifndef BOOST_MATH_STANDALONE
#include <boost/math/special_functions/lambert_w.hpp>
using boost::math::lambert_w0;
#include <boost/math/special_functions.hpp>
using boost::math::isfinite;
#include <boost/svg_plot/svg_2d_plot.hpp>
using namespace boost::svg;
#include <iostream>
// using std::cout;
// using std::endl;
#include <exception>
#include <stdexcept>
#include <string>
#include <array>
#include <vector>
#include <utility>
using std::pair;
#include <map>
using std::map;
#include <set>
using std::multiset;
#include <limits>
using std::numeric_limits;
#include <cmath> //
/*!
Compute thermal voltage as a function of temperature,
about 25 mV at room temperature.
https://en.wikipedia.org/wiki/Boltzmann_constant#Role_in_semiconductor_physics:_the_thermal_voltage
\param temperature Temperature (degrees Celsius).
*/
const double v_thermal(double temperature)
{
constexpr const double boltzmann_k = 1.38e-23; // joules/kelvin.
constexpr double charge_q = 1.6021766208e-19; // Charge of an electron (columb).
double temp = +273; // Degrees C to K.
return boltzmann_k * temp / charge_q;
} // v_thermal
/*!
Banwell & Jayakumar, equation 2, page 291.
*/
double i(double isat, double vd, double vt, double nu)
{
double i = isat * (exp(vd / (nu * vt)) - 1);
return i;
} //
/*!
Banwell & Jayakumar, Equation 4, page 291.
i current flow = isat
v voltage source.
isat reverse saturation current in equation 4.
(might implement equation 4 instead of simpler equation 5?).
vd voltage drop = v - i* rs (equation 1).
vt thermal voltage, 0.0257025 = 25 mV.
nu junction ideality factor (default = unity), also known as the emission coefficient.
re intrinsic emitter resistance, estimated to be 0.3 ohm from low current.
rsat reverse saturation current
\param v Voltage V to compute current I(V).
\param vt Thermal voltage, for example 0.0257025 = 25 mV, computed from boltzmann_k * temp / charge_q;
\param rsat Resistance in series with the diode.
\param re Intrinsic emitter resistance (estimated to be 0.3 ohm from the Rs = 0 data)
\param isat Reverse saturation current (See equation 2).
\param nu Ideality factor (default = unity).
\returns I amp as function of V volt.
*/
//[lambert_w_diode_graph_2
double iv(double v, double vt, double rsat, double re, double isat, double nu = 1.)
{
// V thermal 0.0257025 = 25 mV
// was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.
rsat = rsat + re;
double i = nu * vt / rsat;
// std::cout << "nu * vt / rsat = " << i << std::endl; // 0.000103223
double x = isat * rsat / (nu * vt);
// std::cout << "isat * rsat / (nu * vt) = " << x << std::endl;
double eterm = (v + isat * rsat) / (nu * vt);
// std::cout << "(v + isat * rsat) / (nu * vt) = " << eterm << std::endl;
double e = exp(eterm);
// std::cout << "exp(eterm) = " << e << std::endl;
double w0 = lambert_w0(x * e);
// std::cout << "w0 = " << w0 << std::endl;
return i * w0 - isat;
} // double iv
//] [\lambert_w_diode_graph_2]
std::array<double, 5> rss = { 0., 2.18, 10., 51., 249 }; // series resistance (ohm).
std::array<double, 7> vds = { 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; // Diode voltage.
std::array<double, 7> lni = { -19.65, -15.75, -11.86, -7.97, -4.08, -0.0195, 3.6 }; // ln(current).
int main()
{
try
{
std::cout << "Lambert W diode current example." << std::endl;
//[lambert_w_diode_graph_1
double nu = 1.0; // Assumed ideal.
double vt = v_thermal(25); // v thermal, Shockley equation, expect about 25 mV at room temperature.
double boltzmann_k = 1.38e-23; // joules/kelvin
double temp = 273 + 25;
double charge_q = 1.6e-19; // column
vt = boltzmann_k * temp / charge_q;
std::cout << "V thermal " << vt << std::endl; // V thermal 0.0257025 = 25 mV
double rsat = 0.;
double isat = 25.e-15; // 25 fA;
std::cout << "Isat = " << isat << std::endl;
double re = 0.3; // Estimated from slope of straight section of graph (equation 6).
double v = 0.9;
double icalc = iv(v, vt, 249., re, isat);
std::cout << "voltage = " << v << ", current = " << icalc << ", " << log(icalc) << std::endl; // voltage = 0.9, current = 0.00108485, -6.82631
//] [/lambert_w_diode_graph_1]
// Plot a few measured data points.
std::map<const double, double> zero_data; // Extrapolated from slope of measurements with no external resistor.
zero_data[0.3] = -19.65;
zero_data[0.4] = -15.75;
zero_data[0.5] = -11.86;
zero_data[0.6] = -7.97;
zero_data[0.7] = -4.08;
zero_data[0.8] = -0.0195;
zero_data[0.9] = 3.9;
std::map<const double, double> measured_zero_data; // No external series resistor.
measured_zero_data[0.3] = -19.65;
measured_zero_data[0.4] = -15.75;
measured_zero_data[0.5] = -11.86;
measured_zero_data[0.6] = -7.97;
measured_zero_data[0.7] = -4.2;
measured_zero_data[0.72] = -3.5;
measured_zero_data[0.74] = -2.8;
measured_zero_data[0.76] = -2.3;
measured_zero_data[0.78] = -2.0;
// Measured from Fig 2 as raw data not available.
double step = 0.1;
for (int i = 0; i < vds.size(); i++)
{
zero_data[vds[i]] = lni[i];
std::cout << lni[i] << " " << vds[i] << std::endl;
}
step = 0.01;
std::map<const double, double> data_2;
for (double v = 0.3; v < 1.; v += step)
{
double current = iv(v, vt, 2., re, isat);
data_2[v] = log(current);
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
}
std::map<const double, double> data_10;
for (double v = 0.3; v < 1.; v += step)
{
double current = iv(v, vt, 10., re, isat);
data_10[v] = log(current);
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
}
std::map<const double, double> data_51;
for (double v = 0.3; v < 1.; v += step)
{
double current = iv(v, vt, 51., re, isat);
data_51[v] = log(current);
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
}
std::map<const double, double> data_249;
for (double v = 0.3; v < 1.; v += step)
{
double current = iv(v, vt, 249., re, isat);
data_249[v] = log(current);
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
}
svg_2d_plot data_plot;
data_plot.title("Diode current versus voltage")
.x_size(400)
.y_size(300)
.legend_on(true)
.legend_lines(true)
.x_label("voltage (V)")
.y_label("log(current) (A)")
//.x_label_on(true)
//.y_label_on(true)
//.xy_values_on(false)
.x_range(0.25, 1.)
.y_range(-20., +4.)
.x_major_interval(0.1)
.y_major_interval(4)
.x_major_grid_on(true)
.y_major_grid_on(true)
//.x_values_on(true)
//.y_values_on(true)
.y_values_rotation(horizontal)
//.plot_window_on(true)
.x_values_precision(3)
.y_values_precision(3)
.coord_precision(4) // Needed to avoid stepping on curves.
.copyright_holder("Paul A. Bristow")
.copyright_date("2016")
//.background_border_color(black);
;
// ₀ = subscript zero.
data_plot.plot(zero_data, "I₀(V)").fill_color(lightgray).shape(none).size(3).line_on(true).line_width(0.5);
data_plot.plot(measured_zero_data, "Rs=0 Ω").fill_color(lightgray).shape(square).size(3).line_on(true).line_width(0.5);
data_plot.plot(data_2, "Rs=2 Ω").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
data_plot.plot(data_10, "Rs=10 Ω").line_color(purple).shape(none).line_on(true).bezier_on(false).line_width(1);
data_plot.plot(data_51, "Rs=51 Ω").line_color(green).shape(none).line_on(true).line_width(1);
data_plot.plot(data_249, "Rs=249 Ω").line_color(red).shape(none).line_on(true).line_width(1);
data_plot.write("./diode_iv_plot");
// bezier_on(true);
}
catch (std::exception& ex)
{
std::cout << ex.what() << std::endl;
}
} // int main()
/*
//[lambert_w_output_1
Output:
Lambert W diode current example.
V thermal 0.0257025
Isat = 2.5e-14
voltage = 0.9, current = 0.00108485, -6.82631
-19.65 0.3
-15.75 0.4
-11.86 0.5
-7.97 0.6
-4.08 0.7
-0.0195 0.8
3.6 0.9
//] [/lambert_w_output_1]
*/
#endif // BOOST_MATH_STANDALONE
|