1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*
* Copyright Nick Thompson, 2017
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <boost/math/quadrature/naive_monte_carlo.hpp>
#include <iostream>
#include <iomanip>
#include <limits>
#include <cmath>
#include <thread>
#include <future>
#include <string>
#include <chrono>
#include <boost/math/special_functions/pow.hpp>
#include <boost/math/constants/constants.hpp>
using std::vector;
using std::pair;
using boost::math::quadrature::naive_monte_carlo;
void display_progress(double progress,
double error_estimate,
double current_estimate,
std::chrono::duration<double> estimated_time_to_completion)
{
int barWidth = 70;
std::cout << "[";
int pos = barWidth * progress;
for (int i = 0; i < barWidth; ++i) {
if (i < pos) std::cout << "=";
else if (i == pos) std::cout << ">";
else std::cout << " ";
}
std::cout << "] "
<< int(progress * 100.0)
<< "%, E = "
<< std::setprecision(3)
<< error_estimate
<< ", time to completion: "
<< estimated_time_to_completion.count()
<< " seconds, estimate: "
<< std::setprecision(5)
<< current_estimate
<< " \r";
std::cout.flush();
}
int main()
{
using std::abs;
double exact = 1.3932039296856768591842462603255;
double A = 1.0 / boost::math::pow<3>(boost::math::constants::pi<double>());
auto g = [&](std::vector<double> const & x)
{
return A / (1.0 - cos(x[0])*cos(x[1])*cos(x[2]));
};
vector<pair<double, double>> bounds{{0, boost::math::constants::pi<double>() }, {0, boost::math::constants::pi<double>() }, {0, boost::math::constants::pi<double>() }};
naive_monte_carlo<double, decltype(g)> mc(g, bounds, 0.001);
auto task = mc.integrate();
int s = 0;
std::cout << "Hit ctrl-c to cancel.\n";
while (task.wait_for(std::chrono::seconds(1)) != std::future_status::ready)
{
display_progress(mc.progress(),
mc.current_error_estimate(),
mc.current_estimate(),
mc.estimated_time_to_completion());
// TODO: The following shows that cancellation works,
// but it would be nice to show how it works with a ctrl-c signal handler.
if (s++ > 25){
mc.cancel();
std::cout << "\nCancelling because this is too slow!\n";
}
}
double y = task.get();
display_progress(mc.progress(),
mc.current_error_estimate(),
mc.current_estimate(),
mc.estimated_time_to_completion());
std::cout << std::setprecision(std::numeric_limits<double>::digits10) << std::fixed;
std::cout << "\nFinal value: " << y << std::endl;
std::cout << "Exact : " << exact << std::endl;
std::cout << "Final error estimate: " << mc.current_error_estimate() << std::endl;
std::cout << "Actual error : " << abs(y - exact) << std::endl;
std::cout << "Function calls: " << mc.calls() << std::endl;
std::cout << "Is this good enough? [y/N] ";
bool goodenough = true;
std::string line;
std::getline(std::cin, line);
if (line[0] != 'y')
{
goodenough = false;
}
double new_error = -1;
if (!goodenough)
{
std::cout << "What is the new target error? ";
std::getline(std::cin, line);
new_error = atof(line.c_str());
if (new_error >= mc.current_error_estimate())
{
std::cout << "That error bound is already satisfied.\n";
return 0;
}
}
if (new_error > 0)
{
mc.update_target_error(new_error);
auto task = mc.integrate();
std::cout << "Hit ctrl-c to cancel.\n";
while (task.wait_for(std::chrono::seconds(1)) != std::future_status::ready)
{
display_progress(mc.progress(),
mc.current_error_estimate(),
mc.current_estimate(),
mc.estimated_time_to_completion());
}
double y = task.get();
display_progress(mc.progress(),
mc.current_error_estimate(),
mc.current_estimate(),
mc.estimated_time_to_completion());
std::cout << std::setprecision(std::numeric_limits<double>::digits10) << std::fixed;
std::cout << "\nFinal value: " << y << std::endl;
std::cout << "Exact : " << exact << std::endl;
std::cout << "Final error estimate: " << mc.current_error_estimate() << std::endl;
std::cout << "Actual error : " << abs(y - exact) << std::endl;
std::cout << "Function calls: " << mc.calls() << std::endl;
}
}
|