File: root_finding_start_locations.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (449 lines) | stat: -rw-r--r-- 22,629 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// Copyright John Maddock 2015

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!
// This program also writes files in Quickbook tables mark-up format.

#include <boost/cstdlib.hpp>
#include <boost/config.hpp>
#include <boost/array.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/math/special_functions/ellint_1.hpp>
#include <boost/math/special_functions/ellint_2.hpp>
template <class T>
struct cbrt_functor_noderiv
{
   //  cube root of x using only function - no derivatives.
   cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
   { /* Constructor just stores value a to find root of. */
   }
   T operator()(T const& x)
   {
      T fx = x*x*x - a; // Difference (estimate x^3 - a).
      return fx;
   }
private:
   T a; // to be 'cube_rooted'.
};
//] [/root_finding_noderiv_1

template <class T>
std::uintmax_t cbrt_noderiv(T x, T guess)
{
   // return cube root of x using bracket_and_solve (no derivatives).
   using namespace std;                          // Help ADL of std functions.
   using namespace boost::math::tools;           // For bracket_and_solve_root.

   T factor = 2;                                 // How big steps to take when searching.

   const std::uintmax_t maxit = 20;            // Limit to maximum iterations.
   std::uintmax_t it = maxit;                  // Initially our chosen max iterations, but updated with actual.
   bool is_rising = true;                        // So if result if guess^3 is too low, then try increasing guess.
   int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
   // Some fraction of digits is used to control how accurate to try to make the result.
   int get_digits = digits - 3;                  // We have to have a non-zero interval at each step, so
   // maximum accuracy is digits - 1.  But we also have to
   // allow for inaccuracy in f(x), otherwise the last few
   // iterations just thrash around.
   eps_tolerance<T> tol(get_digits);             // Set the tolerance.
   bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
   return it;
}

template <class T>
struct cbrt_functor_deriv
{ // Functor also returning 1st derivative.
   cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
   { // Constructor stores value a to find root of,
      // for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.
   }
   std::pair<T, T> operator()(T const& x)
   {
      // Return both f(x) and f'(x).
      T fx = x*x*x - a;                // Difference (estimate x^3 - value).
      T dx = 3 * x*x;                 // 1st derivative = 3x^2.
      return std::make_pair(fx, dx);   // 'return' both fx and dx.
   }
private:
   T a;                               // Store value to be 'cube_rooted'.
};

template <class T>
std::uintmax_t cbrt_deriv(T x, T guess)
{
   // return cube root of x using 1st derivative and Newton_Raphson.
   using namespace boost::math::tools;
   T min = guess / 100;                     // We don't really know what this should be!
   T max = guess * 100;                     // We don't really know what this should be!
   const int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
   int get_digits = static_cast<int>(digits * 0.6);    // Accuracy doubles with each step, so stop when we have
   // just over half the digits correct.
   const std::uintmax_t maxit = 20;
   std::uintmax_t it = maxit;
   newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
   return it;
}

template <class T>
struct cbrt_functor_2deriv
{
   // Functor returning both 1st and 2nd derivatives.
   cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
   { // Constructor stores value a to find root of, for example:
      // calling cbrt_functor_2deriv<T>(x) to get cube root of x,
   }
   std::tuple<T, T, T> operator()(T const& x)
   {
      // Return both f(x) and f'(x) and f''(x).
      T fx = x*x*x - a;                     // Difference (estimate x^3 - value).
      T dx = 3 * x*x;                       // 1st derivative = 3x^2.
      T d2x = 6 * x;                        // 2nd derivative = 6x.
      return std::make_tuple(fx, dx, d2x);  // 'return' fx, dx and d2x.
   }
private:
   T a; // to be 'cube_rooted'.
};

template <class T>
std::uintmax_t cbrt_2deriv(T x, T guess)
{ 
   // return cube root of x using 1st and 2nd derivatives and Halley.
   //using namespace std;  // Help ADL of std functions.
   using namespace boost::math::tools;
   T min = guess / 100;                     // We don't really know what this should be!
   T max = guess * 100;                     // We don't really know what this should be!
   const int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
   // digits used to control how accurate to try to make the result.
   int get_digits = static_cast<int>(digits * 0.4);    // Accuracy triples with each step, so stop when just
   // over one third of the digits are correct.
   std::uintmax_t maxit = 20;
   halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
   return maxit;
}

template <class T>
std::uintmax_t cbrt_2deriv_s(T x, T guess)
{ 
   // return cube root of x using 1st and 2nd derivatives and Halley.
   //using namespace std;  // Help ADL of std functions.
   using namespace boost::math::tools;
   T min = guess / 100;                     // We don't really know what this should be!
   T max = guess * 100;                     // We don't really know what this should be!
   const int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
   // digits used to control how accurate to try to make the result.
   int get_digits = static_cast<int>(digits * 0.4);    // Accuracy triples with each step, so stop when just
   // over one third of the digits are correct.
   std::uintmax_t maxit = 20;
   schroder_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
   return maxit;
}

template <typename T = double>
struct elliptic_root_functor_noderiv
{ 
   elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
   { // Constructor just stores value a to find root of.
   }
   T operator()(T const& x)
   {
      // return the difference between required arc-length, and the calculated arc-length for an
      // ellipse with radii m_radius and x:
      T a = (std::max)(m_radius, x);
      T b = (std::min)(m_radius, x);
      T k = sqrt(1 - b * b / (a * a));
      return 4 * a * boost::math::ellint_2(k) - m_arc;
   }
private:
   T m_arc;     // length of arc.
   T m_radius;  // one of the two radii of the ellipse
}; // template <class T> struct elliptic_root_functor_noderiv

template <class T = double>
std::uintmax_t elliptic_root_noderiv(T radius, T arc, T guess)
{ // return the other radius of an ellipse, given one radii and the arc-length
   using namespace std;  // Help ADL of std functions.
   using namespace boost::math::tools; // For bracket_and_solve_root.

   T factor = 2;                       // How big steps to take when searching.

   const std::uintmax_t maxit = 50;  // Limit to maximum iterations.
   std::uintmax_t it = maxit;        // Initially our chosen max iterations, but updated with actual.
   bool is_rising = true;              // arc-length increases if one radii increases, so function is rising
   // Define a termination condition, stop when nearly all digits are correct, but allow for
   // the fact that we are returning a range, and must have some inaccuracy in the elliptic integral:
   eps_tolerance<T> tol(std::numeric_limits<T>::digits - 2);
   // Call bracket_and_solve_root to find the solution, note that this is a rising function:
   bracket_and_solve_root(elliptic_root_functor_noderiv<T>(arc, radius), guess, factor, is_rising, tol, it);
   return it;
} 

template <class T = double>
struct elliptic_root_functor_1deriv
{ // Functor also returning 1st derivative.
   static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");

   elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
   { // Constructor just stores value a to find root of.
   }
   std::pair<T, T> operator()(T const& x)
   {
      // Return the difference between required arc-length, and the calculated arc-length for an
      // ellipse with radii m_radius and x, plus it's derivative.
      // See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
      // We require two elliptic integral calls, but from these we can calculate both
      // the function and it's derivative:
      T a = (std::max)(m_radius, x);
      T b = (std::min)(m_radius, x);
      T a2 = a * a;
      T b2 = b * b;
      T k = sqrt(1 - b2 / a2);
      T Ek = boost::math::ellint_2(k);
      T Kk = boost::math::ellint_1(k);
      T fx = 4 * a * Ek - m_arc;
      T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
      return std::make_pair(fx, dfx);
   }
private:
   T m_arc;     // length of arc.
   T m_radius;  // one of the two radii of the ellipse
};  // struct elliptic_root__functor_1deriv

template <class T = double>
std::uintmax_t elliptic_root_1deriv(T radius, T arc, T guess)
{
   using namespace std;  // Help ADL of std functions.
   using namespace boost::math::tools; // For newton_raphson_iterate.

   static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");

   T min = 0;   // Minimum possible value is zero.
   T max = arc; // Maximum possible value is the arc length.

   // Accuracy doubles at each step, so stop when just over half of the digits are
   // correct, and rely on that step to polish off the remainder:
   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
   const std::uintmax_t maxit = 20;
   std::uintmax_t it = maxit;
   newton_raphson_iterate(elliptic_root_functor_1deriv<T>(arc, radius), guess, min, max, get_digits, it);
   return it;
}

template <class T = double>
struct elliptic_root_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
   static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");

   elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {}
   std::tuple<T, T, T> operator()(T const& x)
   {
      // Return the difference between required arc-length, and the calculated arc-length for an
      // ellipse with radii m_radius and x, plus it's derivative.
      // See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
      // for the second derivative.
      T a = (std::max)(m_radius, x);
      T b = (std::min)(m_radius, x);
      T a2 = a * a;
      T b2 = b * b;
      T k = sqrt(1 - b2 / a2);
      T Ek = boost::math::ellint_2(k);
      T Kk = boost::math::ellint_1(k);
      T fx = 4 * a * Ek - m_arc;
      T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
      T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2));
      return std::make_tuple(fx, dfx, dfx2);
   }
private:
   T m_arc;     // length of arc.
   T m_radius;  // one of the two radii of the ellipse
};

template <class T = double>
std::uintmax_t elliptic_root_2deriv(T radius, T arc, T guess)
{
   using namespace std;                // Help ADL of std functions.
   using namespace boost::math::tools; // For halley_iterate.

   static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");

   T min = 0;                                   // Minimum possible value is zero.
   T max = arc;                                 // radius can't be larger than the arc length.

   // Accuracy triples at each step, so stop when just over one-third of the digits
   // are correct, and the last iteration will polish off the remaining digits:
   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
   const std::uintmax_t maxit = 20;
   std::uintmax_t it = maxit;
   halley_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
   return it;
} // nth_2deriv Halley
//]
// Using 1st and 2nd derivatives using Schroder algorithm.

template <class T = double>
std::uintmax_t elliptic_root_2deriv_s(T radius, T arc, T guess)
{ // return nth root of x using 1st and 2nd derivatives and Schroder.

   using namespace std;  // Help ADL of std functions.
   using namespace boost::math::tools; // For schroder_iterate.

   static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");

   T min = 0; // Minimum possible value is zero.
   T max = arc; // radius can't be larger than the arc length.

   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
   int get_digits = static_cast<int>(digits * 0.4);
   const std::uintmax_t maxit = 20;
   std::uintmax_t it = maxit;
   schroder_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
   return it;
} // T elliptic_root_2deriv_s Schroder


int main()
{
   try
   {
      double to_root = 500;
      double answer = 7.93700525984;

      std::cout << "[table\n"
         << "[[Initial Guess=][-500% ([approx]1.323)][-100% ([approx]3.97)][-50% ([approx]3.96)][-20% ([approx]6.35)][-10% ([approx]7.14)][-5% ([approx]7.54)]"
         "[5% ([approx]8.33)][10% ([approx]8.73)][20% ([approx]9.52)][50% ([approx]11.91)][100% ([approx]15.87)][500 ([approx]47.6)]]\n";
      std::cout << "[[bracket_and_solve_root]["
         << cbrt_noderiv(to_root, answer / 6)
         << "][" << cbrt_noderiv(to_root, answer / 2)
         << "][" << cbrt_noderiv(to_root, answer - answer * 0.5)
         << "][" << cbrt_noderiv(to_root, answer - answer * 0.2)
         << "][" << cbrt_noderiv(to_root, answer - answer * 0.1)
         << "][" << cbrt_noderiv(to_root, answer - answer * 0.05)
         << "][" << cbrt_noderiv(to_root, answer + answer * 0.05)
         << "][" << cbrt_noderiv(to_root, answer + answer * 0.1)
         << "][" << cbrt_noderiv(to_root, answer + answer * 0.2)
         << "][" << cbrt_noderiv(to_root, answer + answer * 0.5)
         << "][" << cbrt_noderiv(to_root, answer + answer)
         << "][" << cbrt_noderiv(to_root, answer + answer * 5) << "]]\n";

      std::cout << "[[newton_iterate]["
         << cbrt_deriv(to_root, answer / 6)
         << "][" << cbrt_deriv(to_root, answer / 2)
         << "][" << cbrt_deriv(to_root, answer - answer * 0.5)
         << "][" << cbrt_deriv(to_root, answer - answer * 0.2)
         << "][" << cbrt_deriv(to_root, answer - answer * 0.1)
         << "][" << cbrt_deriv(to_root, answer - answer * 0.05)
         << "][" << cbrt_deriv(to_root, answer + answer * 0.05)
         << "][" << cbrt_deriv(to_root, answer + answer * 0.1)
         << "][" << cbrt_deriv(to_root, answer + answer * 0.2)
         << "][" << cbrt_deriv(to_root, answer + answer * 0.5)
         << "][" << cbrt_deriv(to_root, answer + answer)
         << "][" << cbrt_deriv(to_root, answer + answer * 5) << "]]\n";

      std::cout << "[[halley_iterate]["
         << cbrt_2deriv(to_root, answer / 6)
         << "][" << cbrt_2deriv(to_root, answer / 2)
         << "][" << cbrt_2deriv(to_root, answer - answer * 0.5)
         << "][" << cbrt_2deriv(to_root, answer - answer * 0.2)
         << "][" << cbrt_2deriv(to_root, answer - answer * 0.1)
         << "][" << cbrt_2deriv(to_root, answer - answer * 0.05)
         << "][" << cbrt_2deriv(to_root, answer + answer * 0.05)
         << "][" << cbrt_2deriv(to_root, answer + answer * 0.1)
         << "][" << cbrt_2deriv(to_root, answer + answer * 0.2)
         << "][" << cbrt_2deriv(to_root, answer + answer * 0.5)
         << "][" << cbrt_2deriv(to_root, answer + answer)
         << "][" << cbrt_2deriv(to_root, answer + answer * 5) << "]]\n";

      std::cout << "[[schr'''&#xf6;'''der_iterate]["
         << cbrt_2deriv_s(to_root, answer / 6)
         << "][" << cbrt_2deriv_s(to_root, answer / 2)
         << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.5)
         << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.2)
         << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.1)
         << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.05)
         << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.05)
         << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.1)
         << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.2)
         << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.5)
         << "][" << cbrt_2deriv_s(to_root, answer + answer)
         << "][" << cbrt_2deriv_s(to_root, answer + answer * 5) << "]]\n]\n\n";


      double radius_a = 10;
      double arc_length = 500;
      double radius_b = 123.6216507967705;

      std::cout << std::setprecision(4) << "[table\n"
         << "[[Initial Guess=][-500% ([approx]" << radius_b / 6 << ")][-100% ([approx]" << radius_b / 2 << ")][-50% ([approx]"
         << radius_b - radius_b * 0.5 << ")][-20% ([approx]" << radius_b - radius_b * 0.2 << ")][-10% ([approx]" << radius_b - radius_b * 0.1 << ")][-5% ([approx]" << radius_b - radius_b * 0.05 << ")]"
         "[5% ([approx]" << radius_b + radius_b * 0.05 << ")][10% ([approx]" << radius_b + radius_b * 0.1 << ")][20% ([approx]" << radius_b + radius_b * 0.2 << ")][50% ([approx]" << radius_b + radius_b * 0.5 
         << ")][100% ([approx]" << radius_b + radius_b << ")][500 ([approx]" << radius_b + radius_b * 5 << ")]]\n";
      std::cout << "[[bracket_and_solve_root]["
         << elliptic_root_noderiv(radius_a, arc_length, radius_b / 6)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b / 2)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.5)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.2)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.1)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.05)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.05)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.1)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.2)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.5)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b)
         << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";

      std::cout << "[[newton_iterate]["
         << elliptic_root_1deriv(radius_a, arc_length, radius_b / 6)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b / 2)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.5)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.2)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.1)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.05)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.05)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.1)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.2)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.5)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b)
         << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";

      std::cout << "[[halley_iterate]["
         << elliptic_root_2deriv(radius_a, arc_length, radius_b / 6)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b / 2)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.5)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.2)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.1)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.05)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.05)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.1)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.2)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.5)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b)
         << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";

      std::cout << "[[schr'''&#xf6;'''der_iterate]["
         << elliptic_root_2deriv_s(radius_a, arc_length, radius_b / 6)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b / 2)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.5)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.2)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.1)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.05)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.05)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.1)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.2)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.5)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b)
         << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n]\n\n";

      return boost::exit_success;
   }
   catch(std::exception ex)
   {
      std::cout << "exception thrown: " << ex.what() << std::endl;
      return boost::exit_failure;
   }
} // int main()