File: trapezoidal_example.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (29 lines) | stat: -rw-r--r-- 1,122 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * Copyright Nick Thompson, 2017
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 *
 * This example shows to to numerically integrate a periodic function using the adaptive_trapezoidal routine provided by boost.
 */

#include <iostream>
#include <cmath>
#include <limits>
#include <boost/math/quadrature/trapezoidal.hpp>

int main()
{
    using boost::math::constants::two_pi;
    using boost::math::constants::third;
    using boost::math::quadrature::trapezoidal;
    // This function has an analytic form for its integral over a period: 2pi/3.
    auto f = [](double x) { return 1/(5 - 4*cos(x)); };

    double Q = trapezoidal(f, (double) 0, two_pi<double>());

    std::cout << std::setprecision(std::numeric_limits<double>::digits10);
    std::cout << "The adaptive trapezoidal rule gives the integral of our function as " << Q << "\n";
    std::cout << "The exact result is                                                 " << two_pi<double>()*third<double>() << "\n";

}