1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*
* Copyright Nick Thompson, 2021
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_NO_THREAD_LOCAL_WITH_NON_TRIVIAL_TYPES
#include "math_unit_test.hpp"
#include <numeric>
#include <random>
#include <array>
#include <boost/core/demangle.hpp>
#include <boost/math/interpolators/bezier_polynomial.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using boost::math::interpolators::bezier_polynomial;
template<typename Real>
void test_linear()
{
std::vector<std::array<Real, 2>> control_points(2);
control_points[0] = {Real(0), Real(0)};
control_points[1] = {Real(1), Real(1)};
auto control_points_copy = control_points;
auto bp = bezier_polynomial(std::move(control_points_copy));
// P(0) = P_0:
CHECK_ULP_CLOSE(control_points[0][0], bp(0)[0], 3);
CHECK_ULP_CLOSE(control_points[0][1], bp(0)[1], 3);
// P(1) = P_n:
CHECK_ULP_CLOSE(control_points[1][0], bp(1)[0], 3);
CHECK_ULP_CLOSE(control_points[1][1], bp(1)[1], 3);
for (Real t = Real(1)/32; t < 1; t += Real(1)/32) {
Real expected0 = (1-t)*control_points[0][0] + t*control_points[1][0];
CHECK_ULP_CLOSE(expected0, bp(t)[0], 3);
}
// P(1) = P_n:
std::array<Real, 2> endpoint{1,2};
bp.edit_control_point(endpoint, 1);
CHECK_ULP_CLOSE(endpoint[0], bp(1)[0], 3);
CHECK_ULP_CLOSE(endpoint[1], bp(1)[1], 3);
}
template<typename Real>
void test_quadratic()
{
std::vector<std::array<Real, 2>> control_points(3);
control_points[0] = {Real(0), Real(0)};
control_points[1] = {Real(1), Real(1)};
control_points[2] = {Real(2), Real(2)};
auto control_points_copy = control_points;
auto bp = bezier_polynomial(std::move(control_points_copy));
// P(0) = P_0:
auto computed_point = bp(0);
CHECK_ULP_CLOSE(control_points[0][0], computed_point[0], 3);
CHECK_ULP_CLOSE(control_points[0][1], computed_point[1], 3);
auto computed_dp = bp.prime(0);
CHECK_ULP_CLOSE(2*(control_points[1][0] - control_points[0][0]), computed_dp[0], 3);
CHECK_ULP_CLOSE(2*(control_points[1][1] - control_points[0][1]), computed_dp[1], 3);
// P(1) = P_n:
computed_point = bp(1);
CHECK_ULP_CLOSE(control_points[2][0], computed_point[0], 3);
CHECK_ULP_CLOSE(control_points[2][1], computed_point[1], 3);
}
// All points on a Bezier polynomial fall into the convex hull of the control polygon.
template<typename Real>
void test_convex_hull()
{
std::vector<std::array<Real, 2>> control_points(4);
control_points[0] = {Real(0), Real(0)};
control_points[1] = {Real(0), Real(1)};
control_points[2] = {Real(1), Real(1)};
control_points[3] = {Real(1), Real(0)};
auto bp = bezier_polynomial(std::move(control_points));
for (Real t = 0; t <= 1; t += Real(1)/32) {
auto p = bp(t);
CHECK_LE(p[0], Real(1));
CHECK_LE(Real(0), p[0]);
CHECK_LE(p[1], Real(1));
CHECK_LE(Real(0), p[1]);
}
}
// Reversal Symmetry: If q(t) is the Bezier polynomial which consumes the control points in reversed order from p(t),
// then p(t) = q(1-t).
template<typename Real>
void test_reversal_symmetry()
{
std::vector<std::array<Real, 3>> control_points(10);
std::uniform_real_distribution<Real> dis(-1,1);
std::mt19937_64 gen;
for (size_t i = 0; i < control_points.size(); ++i) {
for (size_t j = 0; j < 3; ++j) {
control_points[i][j] = dis(gen);
}
}
auto control_points_copy = control_points;
auto bp0 = bezier_polynomial(std::move(control_points_copy));
control_points_copy = control_points;
std::reverse(control_points_copy.begin(), control_points_copy.end());
auto bp1 = bezier_polynomial(std::move(control_points_copy));
auto P0 = bp0(Real(0));
CHECK_ULP_CLOSE(control_points[0][0], P0[0], 3);
CHECK_ULP_CLOSE(control_points[0][1], P0[1], 3);
CHECK_ULP_CLOSE(control_points[0][2], P0[2], 3);
auto P1 = bp0(Real(1));
CHECK_ULP_CLOSE(control_points.back()[0], P1[0], 3);
CHECK_ULP_CLOSE(control_points.back()[1], P1[1], 3);
CHECK_ULP_CLOSE(control_points.back()[2], P1[2], 3);
P0 = bp1(Real(1));
CHECK_ULP_CLOSE(control_points[0][0], P0[0], 3);
CHECK_ULP_CLOSE(control_points[0][1], P0[1], 3);
CHECK_ULP_CLOSE(control_points[0][2], P0[2], 3);
P1 = bp1(Real(0));
CHECK_ULP_CLOSE(control_points.back()[0], P1[0], 3);
CHECK_ULP_CLOSE(control_points.back()[1], P1[1], 3);
CHECK_ULP_CLOSE(control_points.back()[2], P1[2], 3);
for (Real t = 0; t <= 1; t += Real(1.0)) {
auto P0 = bp0(t);
auto P1 = bp1(Real(1.0)-t);
if (!CHECK_ULP_CLOSE(P0[0], P1[0], 3)) {
std::cerr << " Error at t = " << t << "\n";
}
CHECK_ULP_CLOSE(P0[1], P1[1], 3);
CHECK_ULP_CLOSE(P0[2], P1[2], 3);
}
}
// Linear precision: If all control points lie *equidistantly* on a line, then the Bezier curve falls on a line.
// See Bezier and B-spline techniques, Section 2.8, Remark 8.
template<typename Real>
void test_linear_precision()
{
std::vector<std::array<Real, 3>> control_points(10);
std::array<Real, 3> P0 = {1,1,1};
std::array<Real, 3> Pf = {2,2,2};
control_points[0] = P0;
control_points[9] = Pf;
for (size_t i = 1; i < 9; ++i) {
Real t = Real(i)/(control_points.size()-1);
control_points[i][0] = (1-t)*P0[0] + t*Pf[0];
control_points[i][1] = (1-t)*P0[1] + t*Pf[1];
control_points[i][2] = (1-t)*P0[2] + t*Pf[2];
}
auto bp = bezier_polynomial(std::move(control_points));
for (Real t = 0; t < 1; t += Real(1)/32) {
std::array<Real, 3> P;
P[0] = (1-t)*P0[0] + t*Pf[0];
P[1] = (1-t)*P0[1] + t*Pf[1];
P[2] = (1-t)*P0[2] + t*Pf[2];
auto computed = bp(t);
CHECK_ULP_CLOSE(P[0], computed[0], 4);
CHECK_ULP_CLOSE(P[1], computed[1], 4);
CHECK_ULP_CLOSE(P[2], computed[2], 4);
std::array<Real, 3> dP;
dP[0] = Pf[0] - P0[0];
dP[1] = Pf[1] - P0[1];
dP[2] = Pf[2] - P0[2];
auto dpComputed = bp.prime(t);
CHECK_ULP_CLOSE(dP[0], dpComputed[0], 5);
}
}
int main()
{
#ifdef __STDCPP_FLOAT32_T__
test_linear<std::float32_t>();
test_quadratic<std::float32_t>();
test_convex_hull<std::float32_t>();
test_linear_precision<std::float32_t>();
test_reversal_symmetry<std::float32_t>();
#else
test_linear<float>();
test_quadratic<float>();
test_convex_hull<float>();
test_linear_precision<float>();
test_reversal_symmetry<float>();
#endif
#ifdef __STDCPP_FLOAT64_T__
test_linear<std::float64_t>();
test_quadratic<std::float64_t>();
test_convex_hull<std::float64_t>();
test_linear_precision<std::float64_t>();
test_reversal_symmetry<std::float64_t>();
#else
test_linear<double>();
test_quadratic<double>();
test_convex_hull<double>();
test_linear_precision<double>();
test_reversal_symmetry<double>();
#endif
#ifdef BOOST_HAS_FLOAT128
test_linear<float128>();
test_quadratic<float128>();
test_convex_hull<float128>();
#endif
return boost::math::test::report_errors();
}
#else
int main() {
return 0;
}
#endif
|