File: cardinal_cubic_b_spline_test.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (430 lines) | stat: -rw-r--r-- 15,939 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_TEST_MODULE test_cubic_b_spline
#include <cmath>
#include <random>
#include <functional>
#include <boost/random/uniform_real_distribution.hpp>
#include <boost/type_index.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/interpolators/cardinal_cubic_b_spline.hpp>
#include <boost/math/interpolators/detail/cardinal_cubic_b_spline_detail.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>

#if __has_include(<stdfloat>)
#  include <stdfloat>
#endif

using std::sin;
using boost::multiprecision::cpp_bin_float_50;
using boost::math::constants::third;
using boost::math::constants::half;

template<class Real>
void test_b3_spline()
{
    std::cout << "Testing evaluation of spline basis functions on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    // Outside the support:
    Real eps = std::numeric_limits<Real>::epsilon();
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline<Real>(Real(2.5)), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline<Real>(Real(-2.5)), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_prime<Real>(Real(2.5)), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_prime<Real>(Real(-2.5)), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_double_prime<Real>(Real(2.5)), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_double_prime<Real>(Real(-2.5)), (Real) 0);


    // On the boundary of support:
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline<Real>(2), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline<Real>(-2), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_prime<Real>(2), (Real) 0);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_prime<Real>(-2), (Real) 0);

    // Special values:
    BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline<Real>(-1), third<Real>()*half<Real>(), eps);
    BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline<Real>( 1), third<Real>()*half<Real>(), eps);
    BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline<Real>(0), 2*third<Real>(), eps);

    BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline_prime<Real>(-1), half<Real>(), eps);
    BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline_prime<Real>( 1), -half<Real>(), eps);
    BOOST_CHECK_SMALL(boost::math::interpolators::detail::b3_spline_prime<Real>(0), eps);

    // Properties: B3 is an even function, B3' is an odd function.
    for (size_t i = 1; i < 200; ++i)
    {
        Real arg = i*Real(0.01);
        BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline<Real>(arg), boost::math::interpolators::detail::b3_spline<Real>(arg), eps);
        BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline_prime<Real>(-arg), -boost::math::interpolators::detail::b3_spline_prime<Real>(arg), eps);
        BOOST_CHECK_CLOSE(boost::math::interpolators::detail::b3_spline_double_prime<Real>(-arg), boost::math::interpolators::detail::b3_spline_double_prime<Real>(arg), eps);
    }

}
/*
 * This test ensures that the interpolant s(x_j) = f(x_j) at all grid points.
 */
template<class Real>
void test_interpolation_condition()
{
    using std::sqrt;
    std::cout << "Testing interpolation condition for cubic b splines on type " << boost::typeindex::type_id<Real>().pretty_name()  << "\n";
    std::random_device rd;
    std::mt19937 gen(rd());
    boost::random::uniform_real_distribution<Real> dis(1, 10);
    std::vector<Real> v(5000);
    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = dis(gen);
    }

    Real step = static_cast<Real>(0.01);
    Real a = Real(5);
    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), a, step);

    for (size_t i = 0; i < v.size(); ++i)
    {
        Real y = spline(i*step + a);
        // This seems like a very large tolerance, but I don't know of any other interpolators
        // that will be able to do much better on random data.
        BOOST_CHECK_CLOSE(y, v[i], 10000*sqrt(std::numeric_limits<Real>::epsilon()));
    }

}


template<class Real>
void test_constant_function()
{
    std::cout << "Testing that constants are interpolated correctly by cubic b splines on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    std::vector<Real> v(500);
    const Real constant = Real(50.2);
    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = constant;
    }

    Real step = static_cast<Real>(0.02);
    Real a = 5;
    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), a, step);

    for (size_t i = 0; i < v.size(); ++i)
    {
        // Do not test at interpolation point; we already know it works there:
        Real y = spline(i*step + a + Real(0.001));
        BOOST_CHECK_CLOSE(y, constant, 10*std::numeric_limits<Real>::epsilon());
        Real y_prime = spline.prime(i*step + a + Real(0.002));
        BOOST_CHECK_SMALL(y_prime, 5000*std::numeric_limits<Real>::epsilon());
        Real y_double_prime = spline.double_prime(i*step + a + Real(0.002));
        BOOST_CHECK_SMALL(y_double_prime, 5000*std::numeric_limits<Real>::epsilon());

    }

    // Test that correctly specified left and right-derivatives work properly:
    spline = boost::math::interpolators::cardinal_cubic_b_spline<Real>(v.data(), v.size(), a, step, 0, 0);

    for (size_t i = 0; i < v.size(); ++i)
    {
        Real y = spline(i*step + a + Real(0.002));
        BOOST_CHECK_CLOSE(y, constant, std::numeric_limits<Real>::epsilon());
        Real y_prime = spline.prime(i*step + a + Real(0.002));
        BOOST_CHECK_SMALL(y_prime, std::numeric_limits<Real>::epsilon());
    }

    //
    // Again with iterator constructor:
    //
    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline2(v.begin(), v.end(), a, step);

    for (size_t i = 0; i < v.size(); ++i)
    {
       // Do not test at interpolation point; we already know it works there:
       Real y = spline2(i*step + a + Real(0.001));
       BOOST_CHECK_CLOSE(y, constant, 10 * std::numeric_limits<Real>::epsilon());
       Real y_prime = spline2.prime(i*step + a + Real(0.002));
       BOOST_CHECK_SMALL(y_prime, 5000 * std::numeric_limits<Real>::epsilon());
    }

    // Test that correctly specified left and right-derivatives work properly:
    spline2 = boost::math::interpolators::cardinal_cubic_b_spline<Real>(v.begin(), v.end(), a, step, 0, 0);

    for (size_t i = 0; i < v.size(); ++i)
    {
       Real y = spline2(i*step + a + Real(0.002));
       BOOST_CHECK_CLOSE(y, constant, std::numeric_limits<Real>::epsilon());
       Real y_prime = spline2.prime(i*step + a + Real(0.002));
       BOOST_CHECK_SMALL(y_prime, std::numeric_limits<Real>::epsilon());
    }
}


template<class Real>
void test_affine_function()
{
    using std::sqrt;
    std::cout << "Testing that affine functions are interpolated correctly by cubic b splines on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    std::vector<Real> v(500);
    Real a = 10;
    Real b = 8;
    Real step = static_cast<Real>(0.005);

    auto f = [a, b](Real x) { return a*x + b; };
    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = f(i*step);
    }

    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), 0, step);

    for (size_t i = 0; i < v.size() - 1; ++i)
    {
        Real arg = static_cast<Real>(i*step + Real(0.0001));
        Real y = spline(arg);
        BOOST_CHECK_CLOSE(y, f(arg), sqrt(std::numeric_limits<Real>::epsilon()));
        Real y_prime = spline.prime(arg);
        BOOST_CHECK_CLOSE(y_prime, a, 100*sqrt(std::numeric_limits<Real>::epsilon()));
    }

    // Test that correctly specified left and right-derivatives work properly:
    spline = boost::math::interpolators::cardinal_cubic_b_spline<Real>(v.data(), v.size(), 0, step, a, a);

    for (size_t i = 0; i < v.size() - 1; ++i)
    {
        Real arg = static_cast<Real>(i*step + Real(0.0001));
        Real y = spline(arg);
        BOOST_CHECK_CLOSE(y, f(arg), sqrt(std::numeric_limits<Real>::epsilon()));
        Real y_prime = spline.prime(arg);
        BOOST_CHECK_CLOSE(y_prime, a, 100*sqrt(std::numeric_limits<Real>::epsilon()));
    }
}


template<class Real>
void test_quadratic_function()
{
    using std::sqrt;
    std::cout << "Testing that quadratic functions are interpolated correctly by cubic b splines on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    std::vector<Real> v(500);
    Real a = static_cast<Real>(1.2);
    Real b = static_cast<Real>(-3.4);
    Real c = static_cast<Real>(-8.6);
    Real step = static_cast<Real>(0.01);

    auto f = [a, b, c](Real x) { return a*x*x + b*x + c; };
    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = f(i*step);
    }

    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), 0, step);

    for (size_t i = 0; i < v.size() -1; ++i)
    {
        Real arg = static_cast<Real>(i*step + Real(0.001));
        Real y = spline(arg);
        BOOST_CHECK_CLOSE(y, f(arg), Real(0.1));
        Real y_prime = spline.prime(arg);
        BOOST_CHECK_CLOSE(y_prime, 2*a*arg + b, Real(2.0));
    }
}


template<class Real>
void test_circ_conic_function()
{
    using std::sqrt;
    std::cout << "Testing that conic section of a circle is interpolated correctly by cubic b splines on type " << boost::typeindex::type_id<Real>().pretty_name() << '\n';
    std::vector<Real> v(500);
    Real cv = Real(0.1);
    Real w = Real(2.0);
    Real step = Real(2 * w / (v.size() - 1));

    auto f = [cv](Real x) { return cv * x * x / (1 + sqrt(1 - cv * cv * x * x)); };
    auto df = [cv](Real x) { return cv * x / sqrt(1 - cv * cv * x * x); };

    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = f(-w + i * step);
    }

    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), -w, step);

    Real tol = 100 * sqrt(std::numeric_limits<Real>::epsilon());
    if ((std::numeric_limits<Real>::digits > 100) || !std::numeric_limits<Real>::digits)
       tol *= 500000;
    // First check derivatives exactly at end points
    BOOST_CHECK_CLOSE(spline.prime(-w), df(-w), tol);
    BOOST_CHECK_CLOSE(spline.prime(w), df(w), tol);

    for (size_t i = 0; i < v.size() - 1; ++i)
    {
        Real arg = -w + i * step + Real(0.001);
        Real y = spline(arg);
        BOOST_CHECK_CLOSE(y, f(arg), Real(2.0));
        Real y_prime = spline.prime(arg);
        BOOST_CHECK_CLOSE(y_prime, df(arg), Real(1.0));
    }
}


template<class Real>
void test_trig_function()
{
    std::cout << "Testing that sine functions are interpolated correctly by cubic b splines on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    std::mt19937 gen;
    std::vector<Real> v(500);
    Real x0 = 1;
    Real step = Real(0.125);

    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = sin(x0 + step * i);
    }

    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), x0, step);

    boost::random::uniform_real_distribution<Real> abscissa(x0, x0 + 499 * step);

    for (size_t i = 0; i < v.size(); ++i)
    {
        Real x = abscissa(gen);
        Real y = spline(x);
        BOOST_CHECK_CLOSE(y, Real(sin(x)), Real(1.0));
        auto y_prime = spline.prime(x);
        BOOST_CHECK_CLOSE(y_prime, Real(cos(x)), Real(2.0));
    }
}

template<class Real>
void test_copy_move()
{
    std::cout << "Testing that copy/move operation succeed on cubic b spline\n";
    std::vector<Real> v(500);
    Real x0 = 1;
    Real step = static_cast<Real>(0.125);
    constexpr Real tol = Real(0.01);

    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = sin(x0 + step * i);
    }

    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), x0, step);


    // Default constructor should compile so that splines can be member variables:
    boost::math::interpolators::cardinal_cubic_b_spline<Real> d;
    d = boost::math::interpolators::cardinal_cubic_b_spline<Real>(v.data(), v.size(), x0, step);
    BOOST_CHECK_CLOSE(d(x0), Real(sin(x0)), tol);
    // Passing to lambda should compile:
    auto f = [=](Real x) { return d(x); };
    // Make sure this variable is used.
    BOOST_CHECK_CLOSE(f(x0), Real(sin(x0)), tol);

    // Move operations should compile.
    auto s = std::move(spline);

    // Copy operations should compile:
    boost::math::interpolators::cardinal_cubic_b_spline<Real> c = d;
    BOOST_CHECK_CLOSE(c(x0), Real(sin(x0)), tol);

    // Test with std::bind:
    auto h = std::bind(&boost::math::interpolators::cardinal_cubic_b_spline<Real>::operator(), &s, std::placeholders::_1);
    BOOST_CHECK_CLOSE(h(x0), Real(sin(x0)), tol);
}

template<class Real>
void test_outside_interval()
{
    std::cout << "Testing that the spline can be evaluated outside the interpolation interval\n";
    std::vector<Real> v(400);
    Real x0 = 1;
    Real step = Real(0.125);

    for (size_t i = 0; i < v.size(); ++i)
    {
        v[i] = sin(x0 + step * i);
    }

    boost::math::interpolators::cardinal_cubic_b_spline<Real> spline(v.data(), v.size(), x0, step);

    // There's no test here; it simply does it's best to be an extrapolator.
    //
    std::ostream cnull(0);
    cnull << spline(0);
    cnull << spline(2000);
}

BOOST_AUTO_TEST_CASE(test_cubic_b_spline)
{
    #ifdef __STDCPP_FLOAT32_T__

    test_b3_spline<std::float32_t>();
    test_interpolation_condition<std::float32_t>();
    test_constant_function<std::float32_t>();
    test_affine_function<std::float32_t>();
    test_quadratic_function<std::float32_t>();
    test_circ_conic_function<std::float32_t>();
    test_trig_function<std::float32_t>();

    #else
    
    test_b3_spline<float>();
    test_interpolation_condition<float>();
    test_constant_function<float>();
    test_affine_function<float>();
    test_quadratic_function<float>();
    test_circ_conic_function<float>();
    test_trig_function<float>();

    #endif

    #ifdef __STDCPP_FLOAT64_T__

    test_b3_spline<std::float64_t>();
    test_interpolation_condition<std::float64_t>();
    test_constant_function<std::float64_t>();
    test_affine_function<std::float64_t>();
    test_quadratic_function<std::float64_t>();
    test_circ_conic_function<std::float64_t>();
    test_trig_function<std::float64_t>();
    test_copy_move<std::float64_t>();
    test_outside_interval<std::float64_t>();

    #else

    test_b3_spline<double>();
    test_interpolation_condition<double>();
    test_constant_function<double>();
    test_affine_function<double>();
    test_quadratic_function<double>();
    test_circ_conic_function<double>();
    test_trig_function<double>();
    test_copy_move<double>();
    test_outside_interval<double>();

    #endif

    #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS

    test_b3_spline<long double>();
    test_interpolation_condition<long double>();
    test_constant_function<long double>();
    test_affine_function<long double>();
    test_quadratic_function<long double>();
    test_circ_conic_function<long double>();
    test_trig_function<long double>();

    #endif

    test_b3_spline<cpp_bin_float_50>();
    test_interpolation_condition<cpp_bin_float_50>();
    test_constant_function<cpp_bin_float_50>();
    test_affine_function<cpp_bin_float_50>();
    test_quadratic_function<cpp_bin_float_50>();
    test_trig_function<cpp_bin_float_50>();
}