1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <cstdint>
#include <numeric>
#include <utility>
#include <vector>
#include <limits>
#include <boost/math/interpolators/cardinal_quadratic_b_spline.hpp>
using boost::math::interpolators::cardinal_quadratic_b_spline;
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
template<class Real>
void test_constant()
{
Real c = Real(7.2);
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 512;
std::vector<Real> v(n, c);
auto qbs = cardinal_quadratic_b_spline<Real>(v.data(), v.size(), t0, h);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(c, qbs(t), 2);
CHECK_MOLLIFIED_CLOSE(0, qbs.prime(t), (std::numeric_limits<Real>::digits > 100 ? 200 : 100) * std::numeric_limits<Real>::epsilon());
++i;
}
i = 0;
while (i < n) {
Real t = t0 + i*h + h/2;
CHECK_ULP_CLOSE(c, qbs(t), 2);
CHECK_MOLLIFIED_CLOSE(0, qbs.prime(t), 300*std::numeric_limits<Real>::epsilon());
t = t0 + i*h + h/4;
CHECK_ULP_CLOSE(c, qbs(t), 2);
CHECK_MOLLIFIED_CLOSE(0, qbs.prime(t), (std::numeric_limits<Real>::digits > 100 ? 300 : 150) * std::numeric_limits<Real>::epsilon());
++i;
}
}
template<class Real>
void test_linear()
{
Real m = Real(8.3);
Real b = Real(7.2);
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 512;
std::vector<Real> y(n);
for (size_t i = 0; i < n; ++i) {
Real t = i*h;
y[i] = m*t + b;
}
auto qbs = cardinal_quadratic_b_spline<Real>(y.data(), y.size(), t0, h);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(m*t+b, qbs(t), 2);
CHECK_ULP_CLOSE(m, qbs.prime(t), 820);
++i;
}
i = 0;
while (i < n) {
Real t = t0 + i*h + h/2;
CHECK_ULP_CLOSE(m*t+b, qbs(t), 2);
CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 1500*std::numeric_limits<Real>::epsilon());
t = t0 + i*h + h/4;
CHECK_ULP_CLOSE(m*t+b, qbs(t), 3);
CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 1500*std::numeric_limits<Real>::epsilon());
++i;
}
}
template<class Real>
void test_quadratic()
{
Real a = Real(8.2);
Real b = Real(7.2);
Real c = Real(-9.2);
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 513;
std::vector<Real> y(n);
for (size_t i = 0; i < n; ++i) {
Real t = i*h;
y[i] = a*t*t + b*t + c;
}
Real t_max = t0 + (n-1)*h;
auto qbs = cardinal_quadratic_b_spline<Real>(y, t0, h, b, 2*a*t_max + b);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 2);
++i;
}
i = 0;
while (i < n) {
Real t = t0 + i*h + h/2;
CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 47);
t = t0 + i*h + h/4;
if (!CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 104)) {
std::cerr << " Problem abscissa t = " << t << "\n";
}
++i;
}
}
int main()
{
#ifdef __STDCPP_FLOAT32_T__
test_constant<std::float32_t>();
test_linear<std::float32_t>();
#else
test_constant<float>();
test_linear<float>();
#endif
#ifdef __STDCPP_FLOAT64_T__
test_constant<std::float64_t>();
test_linear<std::float64_t>();
test_quadratic<std::float64_t>();
#else
test_constant<double>();
test_linear<double>();
test_quadratic<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_constant<long double>();
test_linear<long double>();
test_quadratic<long double>();
#endif
return boost::math::test::report_errors();
}
|