File: centered_continued_fraction_test.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (149 lines) | stat: -rw-r--r-- 4,723 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 * Copyright Nick Thompson, 2020
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#include "math_unit_test.hpp"
#include <boost/math/tools/centered_continued_fraction.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/core/demangle.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif

using boost::math::tools::centered_continued_fraction;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::constants::pi;

template<class Real>
void test_integral()
{
    for (int64_t i = -20; i < 20; ++i) {
        Real ii = i;
        auto cfrac = centered_continued_fraction<Real>(ii);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(1), a.size());
        CHECK_EQUAL(i, a.front());
    }
}

template<class Real>
void test_halves()
{
    for (int64_t i = 0; i < 20; ++i) {
        // std::round rounds 0.5 up if i > 0, and rounds down if i < 0.
        // Should we care? These representations are not unique anyway;
        // In any case, this behavior agrees with Maple.
        Real x = i + Real(1)/Real(2);
        auto cfrac = centered_continued_fraction<Real>(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(2), a.size());
        CHECK_EQUAL(i + 1, a.front());
        CHECK_EQUAL(int64_t(-2), a.back());
    }

    // We'll also test quarters; why not?
    for (int64_t i = -20; i < 20; ++i) {
        Real x = i + Real(1)/Real(4);
        auto cfrac = centered_continued_fraction<Real>(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(2), a.size());
        CHECK_EQUAL(i, a.front());
        CHECK_EQUAL(int64_t(4), a.back());
    }

    for (int64_t i = -20; i < 20; ++i) {
        Real x = i + Real(1)/Real(8);
        auto cfrac = centered_continued_fraction<Real>(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(2), a.size());
        CHECK_EQUAL(i, a.front());
        CHECK_EQUAL(int64_t(8), a.back());
    }

    for (int64_t i = -20; i < 20; ++i) {
        Real x = i + Real(3)/Real(4);
        auto cfrac = centered_continued_fraction<Real>(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(2), a.size());
        CHECK_EQUAL(i+1, a.front());
        CHECK_EQUAL(int64_t(-4), a[1]);
    }

    for (int64_t i = -20; i < 20; ++i) {
        Real x = i + Real(7)/Real(8);
        auto cfrac = centered_continued_fraction<Real>(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(2), a.size());
        CHECK_EQUAL(i + 1, a.front());
        CHECK_EQUAL(int64_t(-8), a[1]);
    }
}

template<typename Real>
void test_simple()
{
    std::cout << "Testing rational numbers on type " << boost::core::demangle(typeid(Real).name()) << "\n";
    {
        Real x = Real(649)/200;
        // ContinuedFraction[649/200] = [3; 4, 12, 4]
        auto cfrac = centered_continued_fraction(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(4), a.size());
        CHECK_EQUAL(int64_t(3), a[0]);
        CHECK_EQUAL(int64_t(4), a[1]);
        CHECK_EQUAL(int64_t(12), a[2]);
        CHECK_EQUAL(int64_t(4), a[3]);
    }

    {
        Real x = Real(415)/Real(93);
        // [4; 2, 6, 7]:
        auto cfrac = centered_continued_fraction(x);
        auto const & a = cfrac.partial_denominators();
        CHECK_EQUAL(size_t(4), a.size());
        CHECK_EQUAL(int64_t(4), a[0]);
        CHECK_EQUAL(int64_t(2), a[1]);
        CHECK_EQUAL(int64_t(6), a[2]);
        CHECK_EQUAL(int64_t(7), a[3]);
    }

}

template<typename Real>
void test_khinchin()
{
    using std::sqrt;
    auto rt_cfrac = centered_continued_fraction(sqrt(static_cast<Real>(2)));
    Real K0 = rt_cfrac.khinchin_geometric_mean();
    CHECK_ULP_CLOSE(Real(2), K0, 10);
}


int main()
{
    test_integral<float>();
    test_integral<double>();
    test_integral<long double>();
    test_integral<cpp_bin_float_100>();
    test_halves<float>();
    test_halves<double>();
    test_halves<long double>();
    test_halves<cpp_bin_float_100>();
    test_simple<float>();
    test_simple<double>();
    test_simple<long double>();
    test_simple<cpp_bin_float_100>();
    test_khinchin<cpp_bin_float_100>();
    #ifdef BOOST_HAS_FLOAT128
    test_integral<float128>();
    test_halves<float128>();
    test_simple<float128>();
    test_khinchin<float128>();
    #endif
    return boost::math::test::report_errors();
}