1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
// (C) Copyright Nick Thompson, 2019
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <cmath>
#include <limits>
#include "math_unit_test.hpp"
#include <boost/math/special_functions/lambert_w.hpp>
#include <boost/math/tools/condition_numbers.hpp>
#if !defined(TEST) || (TEST > 1)
#include <boost/multiprecision/cpp_bin_float.hpp>
#endif
using std::abs;
using std::log;
using boost::math::tools::summation_condition_number;
using boost::math::tools::evaluation_condition_number;
template<class Real>
void test_summation_condition_number()
{
Real tol = 1000*std::numeric_limits<float>::epsilon();
auto cond = summation_condition_number<Real>();
// I've checked that the condition number increases with max_n,
// and that the computed sum gets more accurate with increasing max_n.
// But the CI system would die with more terms.
Real max_n = 10000;
for (Real n = 1; n < max_n; n += 2)
{
cond += 1/n;
cond -= 1/(n+1);
}
CHECK_ABSOLUTE_ERROR(cond.sum(), log(Real(2)), tol);
CHECK_GE(cond(), Real(14));
}
template<class Real>
void test_exponential_sum()
{
using std::exp;
using std::abs;
Real eps = std::numeric_limits<float>::epsilon();
for (Real x = -20; x <= -1; x += 0.5)
{
auto cond = summation_condition_number<Real>(1);
size_t n = 1;
Real term = x;
while(n++ < 1000)
{
cond += term;
term *= (x/n);
}
CHECK_ABSOLUTE_ERROR(exp(x), cond.sum(), eps*cond()*exp(x));
CHECK_ABSOLUTE_ERROR(exp(2*abs(x)), cond(), eps*cond()*exp(2*abs(x)));
}
}
template<class Real>
void test_evaluation_condition_number()
{
using std::abs;
using std::log;
using std::sqrt;
using std::exp;
using std::sin;
using std::tan;
Real tol = sqrt(std::numeric_limits<Real>::epsilon());
auto f1 = [](auto x) { return log(x); };
for (Real x = 1.125; x < 8; x += 0.125)
{
Real cond = evaluation_condition_number(f1, x);
CHECK_ABSOLUTE_ERROR(cond, 1/log(x), tol);
}
auto f2 = [](auto x) { return exp(x); };
for (Real x = 1.125; x < 8; x += 0.125)
{
Real cond = evaluation_condition_number(f2, x);
CHECK_ABSOLUTE_ERROR(cond, x, tol);
}
auto f3 = [](auto x) { return sin(x); };
for (Real x = 1.125; x < 8; x += 0.125)
{
Real cond = evaluation_condition_number(f3, x);
CHECK_ABSOLUTE_ERROR(cond, abs(x/tan(x)), tol);
}
// Test a function which right differentiable:
using boost::math::constants::e;
auto f4 = [](Real x) { return boost::math::lambert_w0(x); };
Real cond = evaluation_condition_number(f4, -1/e<Real>());
if (std::is_same<Real, float>::value)
{
CHECK_GE(cond, Real(30));
}
else
{
CHECK_GE(cond, Real(4900));
}
}
int main()
{
#if !defined(TEST) || (TEST == 1)
test_summation_condition_number<float>();
test_evaluation_condition_number<float>();
test_evaluation_condition_number<double>();
test_evaluation_condition_number<long double>();
test_exponential_sum<double>();
#endif
#if !defined(TEST) || (TEST == 2)
test_summation_condition_number<boost::multiprecision::cpp_bin_float_50>();
#endif
#if !defined(TEST) || (TEST == 3)
test_evaluation_condition_number<boost::multiprecision::cpp_bin_float_50>();
#endif
return boost::math::test::report_errors();
}
|