1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
/*
* Copyright Nick Thompson, John Maddock 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <iomanip>
#include <iostream>
#include <random>
#include <boost/assert.hpp>
#include <boost/core/demangle.hpp>
#include <boost/hana/for_each.hpp>
#include <boost/hana/ext/std/integer_sequence.hpp>
#include <boost/math/tools/condition_numbers.hpp>
#include <boost/math/special_functions/daubechies_scaling.hpp>
#include <boost/math/filters/daubechies.hpp>
#include <boost/math/special_functions/detail/daubechies_scaling_integer_grid.hpp>
#include <boost/math/quadrature/trapezoidal.hpp>
#include <boost/math/special_functions/next.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using std::sqrt;
// Mallat, Theorem 7.4, characterization number 3:
// A conjugate mirror filter has p vanishing moments iff h^{(n)}(pi) = 0 for 0 <= n < p.
template<class Real, unsigned p>
void test_daubechies_filters()
{
using std::sqrt;
std::cout << "Testing Daubechies filters with " << p << " vanishing moments on type " << boost::core::demangle(typeid(Real).name()) << "\n";
Real tol = 3*std::numeric_limits<Real>::epsilon();
using boost::math::filters::daubechies_scaling_filter;
using boost::math::filters::daubechies_wavelet_filter;
auto h = daubechies_scaling_filter<Real, p>();
auto g = daubechies_wavelet_filter<Real, p>();
auto inner = std::inner_product(h.begin(), h.end(), g.begin(), Real(0));
CHECK_MOLLIFIED_CLOSE(0, inner, tol);
// This is implied by Fourier transform of the two-scale dilatation equation;
// If this doesn't hold, the infinite product for m_0 diverges.
Real H0 = 0;
for (size_t j = 0; j < h.size(); ++j)
{
H0 += h[j];
}
CHECK_MOLLIFIED_CLOSE(sqrt(static_cast<Real>(2)), H0, tol);
// This is implied if we choose the scaling function to be an orthonormal basis of V0.
Real scaling = 0;
for (size_t j = 0; j < h.size(); ++j) {
scaling += h[j]*h[j];
}
CHECK_MOLLIFIED_CLOSE(1, scaling, tol);
using std::pow;
// Daubechies wavelet of order p has p vanishing moments.
// Unfortunately, the condition number of the sum is infinite.
// Hence we must scale the tolerance by the summation condition number to ensure that we don't get spurious test failures.
for (size_t k = 1; k < p && k < 9; ++k)
{
Real hk = 0;
Real abs_hk = 0;
for (size_t n = 0; n < h.size(); ++n)
{
Real t = static_cast<Real>(pow(n, k)*h[n]);
if (n & 1)
{
hk -= t;
}
else
{
hk += t;
}
abs_hk += abs(t);
}
// Multiply the tolerance by the condition number:
Real cond = abs(hk) > 0 ? abs_hk/abs(hk) : 1/std::numeric_limits<Real>::epsilon();
if (!CHECK_MOLLIFIED_CLOSE(0, hk, 2*cond*tol))
{
std::cerr << " The " << k << "th moment of the p = " << p << " filter did not vanish\n";
std::cerr << " Condition number = " << abs_hk/abs(hk) << "\n";
}
}
// For the scaling function to be orthonormal to its integer translates,
// sum h_k h_{k-2l} = \delta_{0,l}.
// See Theoretical Numerical Analysis, Atkinson, Exercise 4.5.2.
// This is the last condition we could test to ensure that the filters are correct,
// but I'm not gonna bother because it's painful!
}
// Test that the filters agree with Daubechies, Ten Lenctures on Wavelets, Table 6.1:
void test_agreement_with_ten_lectures()
{
std::cout << "Testing agreement with Ten Lectures\n";
std::array<double, 4> h2 = {0.4829629131445341, 0.8365163037378077, 0.2241438680420134, -0.1294095225512603};
auto h2_ = boost::math::filters::daubechies_scaling_filter<double, 2>();
for (size_t i = 0; i < h2.size(); ++i)
{
CHECK_ULP_CLOSE(h2[i], h2_[i], 3);
}
std::array<double, 6> h3 = {0.3326705529500825, 0.8068915093110924, 0.4598775021184914, -0.1350110200102546, -0.0854412738820267, 0.0352262918857095};
auto h3_ = boost::math::filters::daubechies_scaling_filter<double, 3>();
for (size_t i = 0; i < h3.size(); ++i)
{
CHECK_ULP_CLOSE(h3[i], h3_[i], 5);
}
std::array<double, 8> h4 = {0.2303778133088964, 0.7148465705529154, 0.6308807679298587, -0.0279837694168599, -0.1870348117190931, 0.0308413818355607, 0.0328830116668852 , -0.010597401785069};
auto h4_ = boost::math::filters::daubechies_scaling_filter<double, 4>();
for (size_t i = 0; i < h4.size(); ++i)
{
if(!CHECK_ULP_CLOSE(h4[i], h4_[i], 18))
{
std::cerr << " Index " << i << " incorrect.\n";
}
}
}
template<class Real1, class Real2, size_t p>
void test_filter_ulp_distance()
{
std::cout << "Testing filters ULP distance between types "
<< boost::core::demangle(typeid(Real1).name()) << "and"
<< boost::core::demangle(typeid(Real2).name()) << "\n";
using boost::math::filters::daubechies_scaling_filter;
auto h1 = daubechies_scaling_filter<Real1, p>();
auto h2 = daubechies_scaling_filter<Real2, p>();
for (size_t i = 0; i < h1.size(); ++i)
{
if(!CHECK_ULP_CLOSE(h1[i], h2[i], 0))
{
std::cerr << " Index " << i << " at order " << p << " failed tolerance check\n";
}
}
}
template<class Real, unsigned p, unsigned order>
void test_integer_grid()
{
std::cout << "Testing integer grid with " << p << " vanishing moments and " << order << " derivative on type " << boost::core::demangle(typeid(Real).name()) << "\n";
using boost::math::detail::daubechies_scaling_integer_grid;
using boost::math::tools::summation_condition_number;
Real unit_roundoff = std::numeric_limits<Real>::epsilon()/2;
auto grid = daubechies_scaling_integer_grid<Real, p, order>();
if constexpr (order == 0)
{
auto cond = summation_condition_number<Real>(0);
for (auto & x : grid)
{
cond += x;
}
CHECK_MOLLIFIED_CLOSE(1, cond.sum(), 6*cond.l1_norm()*unit_roundoff);
}
if constexpr (order == 1)
{
auto cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i) {
cond += i*grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(-1), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
// Differentiate \sum_{k} \phi(x-k) = 1 to get this:
cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i) {
cond += grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(0), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
}
if constexpr (order == 2)
{
auto cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i)
{
cond += i*i*grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(2), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
// Differentiate \sum_{k} \phi(x-k) = 1 to get this:
cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i)
{
cond += grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(0), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
}
if constexpr (order == 3)
{
auto cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i)
{
cond += i*i*i*grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(-6), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
// Differentiate \sum_{k} \phi(x-k) = 1 to get this:
cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i)
{
cond += grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(0), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
}
if constexpr (order == 4)
{
auto cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i)
{
cond += i*i*i*i*grid[i];
}
CHECK_MOLLIFIED_CLOSE(24, cond.sum(), 2*cond.l1_norm()*unit_roundoff);
// Differentiate \sum_{k} \phi(x-k) = 1 to get this:
cond = summation_condition_number<Real>(0);
for (size_t i = 0; i < grid.size(); ++i)
{
cond += grid[i];
}
CHECK_MOLLIFIED_CLOSE(Real(0), cond.sum(), 2*cond.l1_norm()*unit_roundoff);
}
}
template<class Real>
void test_dyadic_grid()
{
std::cout << "Testing dyadic grid on type " << boost::core::demangle(typeid(Real).name()) << "\n";
auto f = [&](auto i)
{
auto phijk = boost::math::daubechies_scaling_dyadic_grid<Real, i+2, 0>(0);
auto phik = boost::math::detail::daubechies_scaling_integer_grid<Real, i+2, 0>();
BOOST_ASSERT(phik.size() == phijk.size());
for (size_t k = 0; k < phik.size(); ++k)
{
CHECK_ULP_CLOSE(phik[k], phijk[k], 0);
}
for (uint64_t j = 1; j < 10; ++j)
{
phijk = boost::math::daubechies_scaling_dyadic_grid<Real, i+2, 0>(j);
phik = boost::math::detail::daubechies_scaling_integer_grid<Real, i+2, 0>();
for (uint64_t l = 0; l < static_cast<uint64_t>(phik.size()); ++l)
{
CHECK_ULP_CLOSE(phik[l], phijk[l*(uint64_t(1)<<j)], 0);
}
// This test is from Daubechies, Ten Lectures on Wavelets, Ch 7 "More About Compactly Supported Wavelets",
// page 245: \forall y \in \mathbb{R}, \sum_{n \in \mathbb{Z}} \phi(y+n) = 1
for (size_t k = 1; k < j; ++k)
{
auto cond = boost::math::tools::summation_condition_number<Real>(0);
for (uint64_t l = 0; l < static_cast<uint64_t>(phik.size()); ++l)
{
uint64_t idx = l*(uint64_t(1)<<j) + k;
if (idx < phijk.size())
{
cond += phijk[idx];
}
}
CHECK_MOLLIFIED_CLOSE(Real(1), cond.sum(), 10*cond()*std::numeric_limits<Real>::epsilon());
}
}
if constexpr (std::numeric_limits<Real>::digits < 30)
{
CHECK_THROW((boost::math::daubechies_scaling_dyadic_grid<Real, i + 2, 0>)(24), std::logic_error);
}
};
boost::hana::for_each(std::make_index_sequence<18>(), f);
}
// Taken from Lin, 2005, doi:10.1016/j.amc.2004.12.038,
// "Direct algorithm for computation of derivatives of the Daubechies basis functions"
void test_first_derivative()
{
#if LDBL_MANT_DIG > 64
// Limited precision test data means we can't test long double here...
#else
auto phi1_3 = boost::math::detail::daubechies_scaling_integer_grid<long double, 3, 1>();
std::array<long double, 6> lin_3{0.0L, 1.638452340884085725014976113635604107L, -2.23275819046313739501774225255380757L,
0.550159358274017614990556164200803310L, 0.044146491305034055012209974717400368L, 0.0L};
for (size_t i = 0; i < lin_3.size(); ++i)
{
if(!CHECK_ULP_CLOSE(lin_3[i], phi1_3[i], 0))
{
std::cerr << " Index " << i << " is incorrect\n";
}
}
auto phi1_4 = boost::math::detail::daubechies_scaling_integer_grid<long double, 4, 1>();
std::array<long double, 8> lin_4 = {0.0L, 1.776072007522184640093776071522502761L, -2.785349397229543142492784905731245880L, 1.192452536632278174347632339082851360L,
-0.131374515184672958793518896272545740L, -0.053571028220239235953599959390993709L,0.001770396479992522798495350789431024L, 0.0L};
for (size_t i = 0; i < lin_4.size(); ++i)
{
if(!CHECK_ULP_CLOSE(lin_4[i], phi1_4[i], 0))
{
std::cerr << " Index " << i << " is incorrect\n";
}
}
std::array<long double, 10> lin_5 = {0.0L, 1.558326313047001366564379221011472479L, -2.436012783189551921436895932290077033L, 1.235905129801454293947038906779457610L, -0.367437713693886635994756136622838186L,
-0.021780351175646546588845564309594589L,0.032347193508143688858158541500450925L,-0.001335619912770701035229330817898250L,-0.000012168384743544313849705250972915L,0.0L};
auto phi1_5 = boost::math::detail::daubechies_scaling_integer_grid<long double, 5, 1>();
for (size_t i = 0; i < lin_5.size(); ++i)
{
if(!CHECK_ULP_CLOSE(lin_5[i], phi1_5[i], 0))
{
std::cerr << " Index " << i << " is incorrect\n";
}
}
#endif
}
template<typename Real, int p>
void test_quadratures()
{
std::cout << "Testing " << p << " vanishing moment scaling function quadratures on type " << boost::core::demangle(typeid(Real).name()) << "\n";
using boost::math::quadrature::trapezoidal;
if constexpr (p == 2)
{
// 2phi is truly bizarre, because two successive trapezoidal estimates are always bitwise equal,
// whereas the third is way different. I don' t think that's a reasonable thing to optimize for,
// so one-off it is.
Real h = Real(1)/Real(256);
auto phi = boost::math::daubechies_scaling<Real, p>();
std::cout << "Scaling functor size is " << phi.bytes() << " bytes" << std::endl;
Real t = 0;
Real Q = 0;
while (t < 3) {
Q += phi(t);
t += h;
}
Q *= h;
CHECK_ULP_CLOSE(Real(1), Q, 32);
auto [a, b] = phi.support();
// Now hit the boundary. Much can go wrong here; this just tests for segfaults:
int samples = 500;
Real xlo = a;
Real xhi = b;
for (int i = 0; i < samples; ++i)
{
CHECK_ULP_CLOSE(Real(0), phi(xlo), 0);
CHECK_ULP_CLOSE(Real(0), phi(xhi), 0);
xlo = std::nextafter(xlo, std::numeric_limits<Real>::lowest());
xhi = std::nextafter(xhi, (std::numeric_limits<Real>::max)());
}
xlo = a;
xhi = b;
for (int i = 0; i < samples; ++i) {
BOOST_ASSERT(abs(phi(xlo)) <= 5);
BOOST_ASSERT(abs(phi(xhi)) <= 5);
xlo = std::nextafter(xlo, (std::numeric_limits<Real>::max)());
xhi = std::nextafter(xhi, std::numeric_limits<Real>::lowest());
}
return;
}
else if constexpr (p > 2)
{
auto phi = boost::math::daubechies_scaling<Real, p>();
std::cout << "Scaling functor size is " << phi.bytes() << " bytes" << std::endl;
Real tol = std::numeric_limits<Real>::epsilon();
Real error_estimate = std::numeric_limits<Real>::quiet_NaN();
Real L1 = std::numeric_limits<Real>::quiet_NaN();
auto [a, b] = phi.support();
Real Q = trapezoidal(phi, a, b, tol, 15, &error_estimate, &L1);
if (!CHECK_MOLLIFIED_CLOSE(Real(1), Q, Real(0.0001)))
{
std::cerr << " Quadrature of " << p << " vanishing moment scaling function is not equal 1.\n";
std::cerr << " Error estimate is " << error_estimate << ", L1 norm is " << L1 << "\n";
}
auto phi_sq = [phi](Real x) { Real t = phi(x); return t*t; };
Q = trapezoidal(phi, a, b, tol, 15, &error_estimate, &L1);
if (!CHECK_MOLLIFIED_CLOSE(Real(1), Q, 20*std::sqrt(std::numeric_limits<Real>::epsilon())/(p*p)))
{
std::cerr << " L2 norm of " << p << " vanishing moment scaling function is not equal 1.\n";
std::cerr << " Error estimate is " << error_estimate << ", L1 norm is " << L1 << "\n";
}
std::random_device rd;
Real t = static_cast<Real>(rd())/static_cast<Real>((rd.max)());
Real S = phi(t);
Real dS = phi.prime(t);
while (t < b)
{
t += 1;
S += phi(t);
dS += phi.prime(t);
}
if(!CHECK_ULP_CLOSE(Real(1), S, 64))
{
std::cerr << " Normalizing sum for " << p << " vanishing moment scaling function is incorrect.\n";
}
// The p = 3, 4 convergence rate is very slow, making this produce false positives:
if constexpr(p > 4)
{
if(!CHECK_MOLLIFIED_CLOSE(Real(0), dS, 100*std::sqrt(std::numeric_limits<Real>::epsilon())))
{
std::cerr << " Derivative of normalizing sum for " << p << " vanishing moment scaling function doesn't vanish.\n";
}
}
// Test boundary for segfaults:
int samples = 500;
Real xlo = a;
Real xhi = b;
for (int i = 0; i < samples; ++i)
{
CHECK_ULP_CLOSE(Real(0), phi(xlo), 0);
CHECK_ULP_CLOSE(Real(0), phi(xhi), 0);
if constexpr (p > 2) {
BOOST_ASSERT(abs(phi.prime(xlo)) <= 5);
BOOST_ASSERT(abs(phi.prime(xhi)) <= 5);
if constexpr (p > 5) {
BOOST_ASSERT(abs(phi.double_prime(xlo)) <= 5);
BOOST_ASSERT(abs(phi.double_prime(xhi)) <= 5);
}
}
xlo = std::nextafter(xlo, std::numeric_limits<Real>::lowest());
xhi = std::nextafter(xhi, (std::numeric_limits<Real>::max)());
}
xlo = a;
xhi = b;
for (int i = 0; i < samples; ++i) {
BOOST_ASSERT(abs(phi(xlo)) <= 5);
BOOST_ASSERT(abs(phi(xhi)) <= 5);
xlo = std::nextafter(xlo, (std::numeric_limits<Real>::max)());
xhi = std::nextafter(xhi, std::numeric_limits<Real>::lowest());
}
}
}
int main()
{
#ifndef __MINGW32__
boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){
test_quadratures<float, i+2>();
test_quadratures<double, i+2>();
});
test_agreement_with_ten_lectures();
boost::hana::for_each(std::make_index_sequence<19>(), [&](auto i){
test_daubechies_filters<float, i+1>();
test_daubechies_filters<double, i+1>();
test_daubechies_filters<long double, i+1>();
});
test_first_derivative();
// All scaling functions have a first derivative.
boost::hana::for_each(std::make_index_sequence<18>(), [&](auto idx){
test_integer_grid<float, idx+2, 0>();
test_integer_grid<float, idx+2, 1>();
test_integer_grid<double, idx+2, 0>();
test_integer_grid<double, idx+2, 1>();
test_integer_grid<long double, idx+2, 0>();
test_integer_grid<long double, idx+2, 1>();
#ifdef BOOST_HAS_FLOAT128
test_integer_grid<float128, idx+2, 0>();
test_integer_grid<float128, idx+2, 1>();
#endif
});
// 4-tap (2 vanishing moment) scaling function does not have a second derivative;
// all other scaling functions do.
boost::hana::for_each(std::make_index_sequence<17>(), [&](auto idx){
test_integer_grid<float, idx+3, 2>();
test_integer_grid<double, idx+3, 2>();
test_integer_grid<long double, idx+3, 2>();
#ifdef BOOST_HAS_FLOAT128
test_integer_grid<boost::multiprecision::float128, idx+3, 2>();
#endif
});
// 8-tap filter (4 vanishing moments) is the first to have a third derivative.
boost::hana::for_each(std::make_index_sequence<16>(), [&](auto idx){
test_integer_grid<float, idx+4, 3>();
test_integer_grid<double, idx+4, 3>();
test_integer_grid<long double, idx+4, 3>();
#ifdef BOOST_HAS_FLOAT128
test_integer_grid<boost::multiprecision::float128, idx+4, 3>();
#endif
});
// 10-tap filter (5 vanishing moments) is the first to have a fourth derivative.
boost::hana::for_each(std::make_index_sequence<15>(), [&](auto idx){
test_integer_grid<float, idx+5, 4>();
test_integer_grid<double, idx+5, 4>();
test_integer_grid<long double, idx+5, 4>();
#ifdef BOOST_HAS_FLOAT128
test_integer_grid<boost::multiprecision::float128, idx+5, 4>();
#endif
});
test_dyadic_grid<float>();
test_dyadic_grid<double>();
test_dyadic_grid<long double>();
#ifdef BOOST_HAS_FLOAT128
test_dyadic_grid<float128>();
#endif
#ifdef BOOST_HAS_FLOAT128
boost::hana::for_each(std::make_index_sequence<19>(), [&](auto i){
test_filter_ulp_distance<float128, long double, i+1>();
test_filter_ulp_distance<float128, double, i+1>();
test_filter_ulp_distance<float128, float, i+1>();
});
boost::hana::for_each(std::make_index_sequence<19>(), [&](auto i){
test_daubechies_filters<float128, i+1>();
});
#endif
#endif // compiler guard for CI
return boost::math::test::report_errors();
}
|