File: daubechies_wavelet_test.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (139 lines) | stat: -rw-r--r-- 5,017 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
 * Copyright Nick Thompson, 2020
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <iomanip>
#include <iostream>
#include <random>
#include <cmath>
#include <boost/assert.hpp>
#include <boost/core/demangle.hpp>
#include <boost/hana/for_each.hpp>
#include <boost/hana/ext/std/integer_sequence.hpp>
#include <boost/math/tools/condition_numbers.hpp>
#include <boost/math/special_functions/daubechies_wavelet.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/quadrature/trapezoidal.hpp>

#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif


using boost::math::constants::pi;
using boost::math::constants::root_two;

template<typename Real>
void test_exact_value()
{
    // The global phase of the wavelet is not constrained by anything other than convention.
    // Make sure that our conventions match the rest of the world:
    auto psi = boost::math::daubechies_wavelet<Real, 2>(2);
    Real computed = psi(1);
    Real expected = -1.366025403784439;
    CHECK_MOLLIFIED_CLOSE(expected, computed, 0.0001);
}

template<typename Real, int p>
void test_quadratures()
{
    std::cout << "Testing quadratures of " << p << " vanishing moment Daubechies wavelet on type " << boost::core::demangle(typeid(Real).name()) << "\n";
    using boost::math::quadrature::trapezoidal;
    auto psi = boost::math::daubechies_wavelet<Real, p>();
    std::cout << "Wavelet functor size is " << psi.bytes() << " bytes" << std::endl;
        
    Real tol = std::numeric_limits<Real>::epsilon();
    Real error_estimate = std::numeric_limits<Real>::quiet_NaN();
    Real L1 = std::numeric_limits<Real>::quiet_NaN();
    auto [a, b] = psi.support();
    CHECK_ULP_CLOSE(Real(-p+1), a, 0);
    CHECK_ULP_CLOSE(Real(p), b, 0);
    // A wavelet is a function of zero average; ensure the quadrature over its support is zero.
    Real Q = trapezoidal(psi, a, b, tol, 15, &error_estimate, &L1);
    if (!CHECK_MOLLIFIED_CLOSE(Real(0), Q, Real(0.0001)))
    {
        std::cerr << "  Quadrature of " << p << " vanishing moment wavelet does not vanish.\n";
        std::cerr << "  Error estimate: " << error_estimate << ", L1 norm: " << L1 << "\n";
    }
    auto psi_sq = [psi](Real x) {
        Real t = psi(x);
        return t*t;
    };
    Q = trapezoidal(psi_sq, a, b, tol, 15, &error_estimate, &L1);
    Real quad_tol = 2000*std::sqrt(std::numeric_limits<Real>::epsilon())/(p*p*p);
    if (!CHECK_MOLLIFIED_CLOSE(Real(1), Q, quad_tol))
    {
        std::cerr << "  L2 norm of " << p << " vanishing moment wavelet does not vanish.\n";
        std::cerr << "  Error estimate: " << error_estimate << ", L1 norm: " << L1 << "\n";
    }
    // psi is orthogonal to its integer translates: \int \psi(x-k) \psi(x) \, \mathrm{d}x = 0
    // g_n = 1/sqrt(2) <psi(t/2), phi(t-n)> (Mallat, 7.55)

    // Now hit the boundary. Much can go wrong here; this just tests for segfaults:
    int samples = 500;
    Real xlo = a;
    Real xhi = b;
    for (int i = 0; i < samples; ++i)
    {
        CHECK_ULP_CLOSE(Real(0), psi(xlo), 0);
        CHECK_ULP_CLOSE(Real(0), psi(xhi), 0);
        if constexpr (p > 2)
        {
            CHECK_ULP_CLOSE(Real(0), psi.prime(xlo), 0);
            CHECK_ULP_CLOSE(Real(0), psi.prime(xhi), 0);
            if constexpr (p >= 6) {
                CHECK_ULP_CLOSE(Real(0), psi.double_prime(xlo), 0);
                CHECK_ULP_CLOSE(Real(0), psi.double_prime(xhi), 0);
            }
        }
        xlo = std::nextafter(xlo, std::numeric_limits<Real>::lowest());
        xhi = std::nextafter(xhi, (std::numeric_limits<Real>::max)());
    }

    xlo = a;
    xhi = b;
    for (int i = 0; i < samples; ++i) {
        std::cout << std::setprecision(std::numeric_limits<Real>::max_digits10);
        BOOST_ASSERT(abs(psi(xlo)) <= 5);
        BOOST_ASSERT(abs(psi(xhi)) <= 5);
        if constexpr (p > 2)
        {
            BOOST_ASSERT(abs(psi.prime(xlo)) <= 5);
            BOOST_ASSERT(abs(psi.prime(xhi)) <= 5);
            if constexpr (p >= 6)
            {
                BOOST_ASSERT(abs(psi.double_prime(xlo)) <= 5);
                BOOST_ASSERT(abs(psi.double_prime(xhi)) <= 5);
            }
        }
        xlo = std::nextafter(xlo, (std::numeric_limits<Real>::max)());
        xhi = std::nextafter(xhi, std::numeric_limits<Real>::lowest());
    }
}

int main()
{
    #ifndef __MINGW32__
    try
    {
      test_exact_value<double>();

      boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i) {
         test_quadratures<float, i + 3>();
         test_quadratures<double, i + 3>();
         });
    }
    catch (std::bad_alloc)
    {
       // not much we can do about this, this test uses lots of memory!
    }
    #endif
    return boost::math::test::report_errors();
}