1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
// boost-no-inspect
/*
* Copyright Nick Thompson, 2023
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <iomanip>
#include <iostream>
#include <random>
#include <boost/math/tools/condition_numbers.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/quadrature/trapezoidal.hpp>
#include <boost/math/special_functions/daubechies_scaling.hpp>
#include <boost/math/special_functions/daubechies_wavelet.hpp>
#include <boost/math/special_functions/fourier_transform_daubechies.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using boost::math::fourier_transform_daubechies_scaling;
using boost::math::fourier_transform_daubechies_wavelet;
using boost::math::tools::summation_condition_number;
using boost::math::constants::two_pi;
using boost::math::constants::pi;
using boost::math::constants::one_div_root_two_pi;
using boost::math::quadrature::trapezoidal;
// 𝓕[φ](-ω) = 𝓕[φ](ω)*
template<typename Real, int p>
void test_evaluation_symmetry() {
std::cout << "Testing evaluation symmetry on the " << p << " vanishing moment scaling function.\n";
auto phi = fourier_transform_daubechies_scaling<Real, p>(0.0);
CHECK_ULP_CLOSE(one_div_root_two_pi<Real>(), phi.real(), 3);
CHECK_ULP_CLOSE(static_cast<Real>(0), phi.imag(), 3);
Real domega = Real(1)/128;
for (Real omega = domega; omega < 10; omega += domega) {
auto phi1 = fourier_transform_daubechies_scaling<Real, p>(-omega);
auto phi2 = fourier_transform_daubechies_scaling<Real, p>(omega);
CHECK_ULP_CLOSE(phi1.real(), phi2.real(), 3);
CHECK_ULP_CLOSE(phi1.imag(), -phi2.imag(), 3);
auto psi1 = fourier_transform_daubechies_wavelet<Real, p>(-omega);
auto psi2 = fourier_transform_daubechies_wavelet<Real, p>(omega);
CHECK_ULP_CLOSE(psi1.real(), psi2.real(), 3);
CHECK_ULP_CLOSE(psi1.imag(), -psi2.imag(), 3);
}
for (Real omega = 10; omega < std::cbrt(std::numeric_limits<Real>::max()); omega *= 10) {
auto phi1 = fourier_transform_daubechies_scaling<Real, p>(-omega);
auto phi2 = fourier_transform_daubechies_scaling<Real, p>(omega);
CHECK_ULP_CLOSE(phi1.real(), phi2.real(), 3);
CHECK_ULP_CLOSE(phi1.imag(), -phi2.imag(), 3);
}
return;
}
template<typename Real, int p>
void test_roots() {
std::cout << "Testing roots on the " << p << " vanishing moment scaling function.\n";
for (long n = 1; n < 100; ++n) {
// All arguments of the form 2πn are roots of the complex function:
// See Daubechies, 10 Lectures on Wavelets, Section 6.2:
Real omega = n*two_pi<Real>();
Real residual = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega));
CHECK_LE(residual, std::numeric_limits<Real>::epsilon()*std::numeric_limits<Real>::epsilon());
}
std::cout << "Testing roots on the " << p << " vanishing moment wavelet.\n";
// If ωₙ is a root of the 𝓕[𝜙], then 2ωₙ is a root of 𝓕[ψ].
// In addition, m₀(π) = 0, and m₀ is 2π periodic.
// Recalling 𝓕[ψ](ω) = exp(iω/2)m₀(ω/2 + π)^{*}𝓕[𝜙](ω/2)*phase,
// ω=4nπ are also roots:
for (long n = 0; n < 100; ++n) {
Real omega = 4*n*pi<Real>();
Real residual = std::norm(fourier_transform_daubechies_wavelet<Real, p>(omega));
CHECK_LE(residual, std::numeric_limits<Real>::epsilon()*std::numeric_limits<Real>::epsilon());
}
}
template<int p>
void test_scaling_quadrature() {
std::cout << "Testing numerical quadrature of the scaling function with " << p << " vanishing moments matches numerical evaluation.\n";
auto phi = boost::math::daubechies_scaling<double, p>();
auto [tmin, tmax] = phi.support();
double domega = 1/8.0;
for (double omega = domega; omega < 10; omega += domega) {
// I suspect the quadrature is less accurate than special function evaluation, so this is just a sanity check:
auto f = [&](double t) {
return phi(t)*std::exp(std::complex<double>(0, -omega*t))*one_div_root_two_pi<double>();
};
auto expected = trapezoidal(f, tmin, tmax, 2*std::numeric_limits<double>::epsilon());
auto computed = fourier_transform_daubechies_scaling<float, p>(static_cast<float>(omega));
CHECK_MOLLIFIED_CLOSE(static_cast<float>(expected.real()), computed.real(), 1e-4);
CHECK_MOLLIFIED_CLOSE(static_cast<float>(expected.imag()), computed.imag(), 1e-4);
}
}
template<int p>
void test_wavelet_quadrature() {
std::cout << "Testing numerical quadrature of the wavelet with " << p << " vanishing moments matches numerical evaluation.\n";
auto psi = boost::math::daubechies_wavelet<double, p>();
auto [tmin, tmax] = psi.support();
double domega = 1/8.0;
// There is a root at at ω=0, so skip this one because we can't recover the phase of a root.
for (double omega = 2*domega; omega < 10; omega += domega) {
// I suspect the quadrature is less accurate than special function evaluation, so this is just a sanity check:
auto f = [&](double t) {
return psi(t)*std::exp(std::complex<double>(0, -omega*t))*one_div_root_two_pi<double>();
};
auto expected = trapezoidal(f, tmin, tmax, std::numeric_limits<double>::epsilon());
auto computed = fourier_transform_daubechies_wavelet<double, p>(omega);
if(!CHECK_ABSOLUTE_ERROR(std::abs(expected), std::abs(computed), 1e-9)) {
std::cerr << " |𝓕[ψ](" << omega << ")| is incorrect.\n";
}
// Again, lots of evidence that the quadrature is less accurate than what we've implemented.
// Graph of the quadrature phase is super janky; graph of the implementation phase is pretty good.
if(!CHECK_ABSOLUTE_ERROR(std::arg(expected), std::arg(computed), 1e-2)) {
std::cerr << " arg(𝓕[ψ](" << omega << ")) is incorrect.\n";
}
}
}
// Tests Daubechies "Ten Lectures on Wavelets", equation 5.1.19:
template<typename Real, int p>
void test_ten_lectures_eq_5_1_19() {
std::cout << "Testing Ten Lectures equation 5.1.19 on " << p << " vanishing moments.\n";
Real domega = Real(1)/Real(16);
for (Real omega = 0; omega < 1; omega += domega) {
Real term = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega));
auto sum = summation_condition_number<Real>(term);
int64_t l = 1;
while (l < 10000 && term > 2*std::numeric_limits<Real>::epsilon()) {
Real tpl = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega + two_pi<Real>()*l));
Real tml = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega - two_pi<Real>()*l));
sum += tpl;
sum += tml;
++l;
}
// With arg promotion, I can get this to 13 ULPS:
if (!CHECK_ULP_CLOSE(1/two_pi<Real>(), sum.sum(), 125)) {
std::cerr << " Failure with occurs on " << p << " vanishing moments.\n";
}
}
}
// Tests Daubechies "Ten Lectures on Wavelets", equation 5.1.38:
template<typename Real, int p>
void test_ten_lectures_eq_5_1_38() {
std::cout << "Testing Ten Lectures equation 5.1.38 on " << p << " vanishing moments.\n";
Real domega = Real(1)/Real(16);
for (Real omega = 0; omega < 1; omega += domega) {
Real phi_omega_sq = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega));
Real psi_omega_sq = std::norm(fourier_transform_daubechies_wavelet<Real, p>(omega));
Real phi_half_omega_sq = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega/2));
if (!CHECK_ULP_CLOSE(phi_half_omega_sq, phi_omega_sq + psi_omega_sq, 125)) {
std::cerr << " Failure with occurs on " << p << " vanishing moments at omega = " << omega << "\n";
}
}
}
int main()
{
test_roots<float, 1>();
test_roots<float, 2>();
test_roots<float, 3>();
test_roots<float, 4>();
test_roots<float, 5>();
test_roots<float, 6>();
test_roots<float, 7>();
test_roots<float, 8>();
test_roots<float, 9>();
test_roots<float, 10>();
test_evaluation_symmetry<float, 1>();
test_evaluation_symmetry<float, 2>();
test_evaluation_symmetry<float, 3>();
test_evaluation_symmetry<float, 4>();
test_evaluation_symmetry<float, 5>();
test_evaluation_symmetry<float, 6>();
test_evaluation_symmetry<float, 7>();
test_evaluation_symmetry<float, 8>();
test_evaluation_symmetry<float, 9>();
test_evaluation_symmetry<float, 10>();
// Slow tests:
test_scaling_quadrature<9>();
test_scaling_quadrature<10>();
// This one converges really slowly:
//test_ten_lectures_eq_5_1_19<float, 1>();
test_ten_lectures_eq_5_1_19<float, 2>();
test_ten_lectures_eq_5_1_19<float, 3>();
test_ten_lectures_eq_5_1_19<float, 4>();
test_ten_lectures_eq_5_1_19<float, 5>();
test_ten_lectures_eq_5_1_19<float, 6>();
test_ten_lectures_eq_5_1_19<float, 7>();
test_ten_lectures_eq_5_1_19<float, 8>();
test_ten_lectures_eq_5_1_19<float, 9>();
test_ten_lectures_eq_5_1_19<float, 10>();
test_ten_lectures_eq_5_1_38<float, 3>();
test_ten_lectures_eq_5_1_38<float, 4>();
test_ten_lectures_eq_5_1_38<float, 5>();
test_ten_lectures_eq_5_1_38<float, 6>();
test_wavelet_quadrature<9>();
return boost::math::test::report_errors();
}
|