File: fourier_transform_daubechies_test.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (219 lines) | stat: -rw-r--r-- 9,449 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// boost-no-inspect
/*
 * Copyright Nick Thompson, 2023
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <iomanip>
#include <iostream>
#include <random>
#include <boost/math/tools/condition_numbers.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/quadrature/trapezoidal.hpp>
#include <boost/math/special_functions/daubechies_scaling.hpp>
#include <boost/math/special_functions/daubechies_wavelet.hpp>
#include <boost/math/special_functions/fourier_transform_daubechies.hpp>

#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif

using boost::math::fourier_transform_daubechies_scaling;
using boost::math::fourier_transform_daubechies_wavelet;
using boost::math::tools::summation_condition_number;
using boost::math::constants::two_pi;
using boost::math::constants::pi;
using boost::math::constants::one_div_root_two_pi;
using boost::math::quadrature::trapezoidal;
// 𝓕[φ](-ω) = 𝓕[φ](ω)*
template<typename Real, int p>
void test_evaluation_symmetry() {
   std::cout << "Testing evaluation symmetry on the " << p << " vanishing moment scaling function.\n";
   auto phi = fourier_transform_daubechies_scaling<Real, p>(0.0);
   CHECK_ULP_CLOSE(one_div_root_two_pi<Real>(), phi.real(), 3);
   CHECK_ULP_CLOSE(static_cast<Real>(0), phi.imag(), 3);

   Real domega = Real(1)/128;
   for (Real omega = domega; omega < 10; omega += domega) {
      auto phi1 = fourier_transform_daubechies_scaling<Real, p>(-omega);
      auto phi2 = fourier_transform_daubechies_scaling<Real, p>(omega);
      CHECK_ULP_CLOSE(phi1.real(), phi2.real(), 3);
      CHECK_ULP_CLOSE(phi1.imag(), -phi2.imag(), 3);

      auto psi1 = fourier_transform_daubechies_wavelet<Real, p>(-omega);
      auto psi2 = fourier_transform_daubechies_wavelet<Real, p>(omega);
      CHECK_ULP_CLOSE(psi1.real(), psi2.real(), 3);
      CHECK_ULP_CLOSE(psi1.imag(), -psi2.imag(), 3);
   }

   for (Real omega = 10; omega < std::cbrt(std::numeric_limits<Real>::max()); omega *= 10) {
      auto phi1 = fourier_transform_daubechies_scaling<Real, p>(-omega);
      auto phi2 = fourier_transform_daubechies_scaling<Real, p>(omega);
      CHECK_ULP_CLOSE(phi1.real(), phi2.real(), 3);
      CHECK_ULP_CLOSE(phi1.imag(), -phi2.imag(), 3);
   }
   return;
}

template<typename Real, int p>
void test_roots() {
   std::cout << "Testing roots on the " << p << " vanishing moment scaling function.\n";
   for (long n = 1; n < 100; ++n) {
      // All arguments of the form 2πn are roots of the complex function:
      // See Daubechies, 10 Lectures on Wavelets, Section 6.2:
      Real omega = n*two_pi<Real>();
      Real residual = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega));
      CHECK_LE(residual, std::numeric_limits<Real>::epsilon()*std::numeric_limits<Real>::epsilon());
   }
   std::cout << "Testing roots on the " << p << " vanishing moment wavelet.\n";
   // If ωₙ is a root of the 𝓕[𝜙], then 2ωₙ is a root of 𝓕[ψ].
   // In addition, m₀(π) = 0, and m₀ is 2π periodic.
   // Recalling 𝓕[ψ](ω) = exp(iω/2)m₀(ω/2 + π)^{*}𝓕[𝜙](ω/2)*phase,
   // ω=4nπ are also roots:
   for (long n = 0; n < 100; ++n) {
      Real omega = 4*n*pi<Real>();
      Real residual = std::norm(fourier_transform_daubechies_wavelet<Real, p>(omega));
      CHECK_LE(residual, std::numeric_limits<Real>::epsilon()*std::numeric_limits<Real>::epsilon());
   }
}

template<int p>
void test_scaling_quadrature() {
   std::cout << "Testing numerical quadrature of the scaling function with " << p << " vanishing moments matches numerical evaluation.\n";
   auto phi = boost::math::daubechies_scaling<double, p>();
   auto [tmin, tmax] = phi.support();
   double domega = 1/8.0;
   for (double omega = domega; omega < 10; omega += domega) {
      // I suspect the quadrature is less accurate than special function evaluation, so this is just a sanity check:
      auto f = [&](double t) {
        return phi(t)*std::exp(std::complex<double>(0, -omega*t))*one_div_root_two_pi<double>();
      };
      auto expected = trapezoidal(f, tmin, tmax, 2*std::numeric_limits<double>::epsilon());
      auto computed = fourier_transform_daubechies_scaling<float, p>(static_cast<float>(omega));
      CHECK_MOLLIFIED_CLOSE(static_cast<float>(expected.real()), computed.real(), 1e-4);
      CHECK_MOLLIFIED_CLOSE(static_cast<float>(expected.imag()), computed.imag(), 1e-4);
   }
}

template<int p>
void test_wavelet_quadrature() {
   std::cout << "Testing numerical quadrature of the wavelet with " << p << " vanishing moments matches numerical evaluation.\n";
   auto psi = boost::math::daubechies_wavelet<double, p>();
   auto [tmin, tmax] = psi.support();
   double domega = 1/8.0;
   // There is a root at at ω=0, so skip this one because we can't recover the phase of a root. 
   for (double omega = 2*domega; omega < 10; omega += domega) {
      // I suspect the quadrature is less accurate than special function evaluation, so this is just a sanity check:
      auto f = [&](double t) {
        return psi(t)*std::exp(std::complex<double>(0, -omega*t))*one_div_root_two_pi<double>();
      };
      auto expected = trapezoidal(f, tmin, tmax, std::numeric_limits<double>::epsilon());
      auto computed = fourier_transform_daubechies_wavelet<double, p>(omega);
      if(!CHECK_ABSOLUTE_ERROR(std::abs(expected), std::abs(computed), 1e-9)) {
         std::cerr << "  |𝓕[ψ](" << omega << ")| is incorrect.\n";
      }
      // Again, lots of evidence that the quadrature is less accurate than what we've implemented.
      // Graph of the quadrature phase is super janky; graph of the implementation phase is pretty good.
      if(!CHECK_ABSOLUTE_ERROR(std::arg(expected), std::arg(computed), 1e-2)) {
         std::cerr << "  arg(𝓕[ψ](" << omega << ")) is incorrect.\n";
      }
   }
}


// Tests Daubechies "Ten Lectures on Wavelets", equation 5.1.19:
template<typename Real, int p>
void test_ten_lectures_eq_5_1_19() {
   std::cout << "Testing Ten Lectures equation 5.1.19 on " << p << " vanishing moments.\n";
   Real domega = Real(1)/Real(16);
   for (Real omega = 0; omega < 1; omega += domega) {
       Real term = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega));
       auto sum = summation_condition_number<Real>(term);
       int64_t l = 1;
       while (l < 10000 && term > 2*std::numeric_limits<Real>::epsilon()) {
           Real tpl = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega + two_pi<Real>()*l));
           Real tml = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega - two_pi<Real>()*l));

           sum += tpl;
           sum += tml;
           ++l;
       }
       // With arg promotion, I can get this to 13 ULPS:
       if (!CHECK_ULP_CLOSE(1/two_pi<Real>(), sum.sum(), 125)) {
            std::cerr << "  Failure with occurs on " << p << " vanishing moments.\n";
       }
   }
}

// Tests Daubechies "Ten Lectures on Wavelets", equation 5.1.38:
template<typename Real, int p>
void test_ten_lectures_eq_5_1_38() {
   std::cout << "Testing Ten Lectures equation 5.1.38 on " << p << " vanishing moments.\n";
   Real domega = Real(1)/Real(16);
   for (Real omega = 0; omega < 1; omega += domega) {
       Real phi_omega_sq = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega));
       Real psi_omega_sq = std::norm(fourier_transform_daubechies_wavelet<Real, p>(omega));
       Real phi_half_omega_sq = std::norm(fourier_transform_daubechies_scaling<Real, p>(omega/2));

       if (!CHECK_ULP_CLOSE(phi_half_omega_sq, phi_omega_sq + psi_omega_sq, 125)) {
            std::cerr << "  Failure with occurs on " << p << " vanishing moments at omega = " << omega << "\n";
       }
   }
}


int main()
{
  test_roots<float, 1>();
  test_roots<float, 2>();
  test_roots<float, 3>();
  test_roots<float, 4>();
  test_roots<float, 5>();
  test_roots<float, 6>();
  test_roots<float, 7>();
  test_roots<float, 8>();
  test_roots<float, 9>();
  test_roots<float, 10>();

  test_evaluation_symmetry<float, 1>();
  test_evaluation_symmetry<float, 2>();
  test_evaluation_symmetry<float, 3>();
  test_evaluation_symmetry<float, 4>();
  test_evaluation_symmetry<float, 5>();
  test_evaluation_symmetry<float, 6>();
  test_evaluation_symmetry<float, 7>();
  test_evaluation_symmetry<float, 8>();
  test_evaluation_symmetry<float, 9>();
  test_evaluation_symmetry<float, 10>();

  // Slow tests:
  test_scaling_quadrature<9>();
  test_scaling_quadrature<10>();

  // This one converges really slowly:
  //test_ten_lectures_eq_5_1_19<float, 1>();
  test_ten_lectures_eq_5_1_19<float, 2>();
  test_ten_lectures_eq_5_1_19<float, 3>();
  test_ten_lectures_eq_5_1_19<float, 4>();
  test_ten_lectures_eq_5_1_19<float, 5>();
  test_ten_lectures_eq_5_1_19<float, 6>();
  test_ten_lectures_eq_5_1_19<float, 7>();
  test_ten_lectures_eq_5_1_19<float, 8>();
  test_ten_lectures_eq_5_1_19<float, 9>();
  test_ten_lectures_eq_5_1_19<float, 10>();

  test_ten_lectures_eq_5_1_38<float, 3>();
  test_ten_lectures_eq_5_1_38<float, 4>();
  test_ten_lectures_eq_5_1_38<float, 5>();
  test_ten_lectures_eq_5_1_38<float, 6>();

  test_wavelet_quadrature<9>();
 
  return boost::math::test::report_errors();
}