1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <random>
#include <cmath>
#include <boost/core/demangle.hpp>
#include <boost/math/special_functions/gegenbauer.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using std::abs;
using boost::math::gegenbauer;
using boost::math::gegenbauer_derivative;
template<class Real>
void test_parity()
{
std::mt19937 gen(323723);
std::uniform_real_distribution<Real> xdis(-1, +1);
std::uniform_real_distribution<Real> lambdadis(Real(-0.5), 1);
for(unsigned n = 0; n < 50; ++n) {
unsigned calls = 50;
unsigned i = 0;
while(i++ < calls) {
Real x = xdis(gen);
Real lambda = lambdadis(gen);
if (n & 1) {
CHECK_ULP_CLOSE(gegenbauer(n, lambda, -x), -gegenbauer(n, lambda, x), 0);
}
else {
CHECK_ULP_CLOSE(gegenbauer(n, lambda, -x), gegenbauer(n, lambda, x), 0);
}
}
}
}
template<class Real>
void test_quadratic()
{
Real lambda = 1/Real(4);
auto c2 = [&](Real x) { return -lambda + 2*lambda*(1+lambda)*x*x; };
Real x = -1;
Real h = 1/Real(256);
while (x < 1) {
Real expected = c2(x);
Real computed = gegenbauer(2, lambda, x);
CHECK_ULP_CLOSE(expected, computed, 0);
x += h;
}
}
template<class Real>
void test_cubic()
{
Real lambda = 1/Real(4);
auto c3 = [&](Real x) { return lambda*(1+lambda)*x*(-2 + 4*(2+lambda)*x*x/3); };
Real x = -1;
Real h = 1/Real(256);
while (x < 1) {
Real expected = c3(x);
Real computed = gegenbauer(3, lambda, x);
CHECK_ULP_CLOSE(expected, computed, 4);
x += h;
}
}
template<class Real>
void test_derivative()
{
Real lambda = Real(0.5);
auto c3_prime = [&](Real x) { return 2*lambda*(lambda+1)*(-1 + 2*(lambda+2)*x*x); };
auto c3_double_prime = [&](Real x) { return 8*lambda*(lambda+1)*(lambda+2)*x; };
Real x = -1;
Real h = 1/Real(256);
while (x < 1) {
Real expected = c3_prime(x);
Real computed = gegenbauer_derivative(3, lambda, x, 1);
CHECK_ULP_CLOSE(expected, computed, 1);
expected = c3_double_prime(x);
computed = gegenbauer_derivative(3, lambda, x, 2);
CHECK_ULP_CLOSE(expected, computed, 1);
x += h;
}
}
int main()
{
#ifdef __STDCPP_FLOAT32_T__
test_parity<std::float32_t>();
test_quadratic<std::float32_t>();
test_derivative<std::float32_t>();
#else
test_parity<float>();
test_quadratic<float>();
test_derivative<float>();
#endif
#ifdef __STDCPP_FLOAT64_T__
test_parity<std::float64_t>();
test_quadratic<std::float64_t>();
test_cubic<std::float64_t>();
test_derivative<std::float64_t>();
#else
test_parity<double>();
test_quadratic<double>();
test_cubic<double>();
test_derivative<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_parity<long double>();
test_quadratic<long double>();
test_cubic<long double>();
test_derivative<long double>();
#endif
#ifdef BOOST_HAS_FLOAT128
test_quadratic<boost::multiprecision::float128>();
test_cubic<boost::multiprecision::float128>();
#endif
return boost::math::test::report_errors();
}
|