1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <random>
#include <cmath>
#include <boost/math/special_functions/jacobi.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using std::abs;
using boost::math::jacobi;
using boost::math::jacobi_derivative;
template<typename Real>
void test_to_quadratic()
{
Real h = 1/Real(8);
for (Real alpha = -1 + h; alpha < 2; alpha += h) {
for (Real beta = -1 + h; beta < 2; beta += h) {
for (Real x = -1; x < 1; x += h) {
Real expected = 1;
Real computed = jacobi(0, alpha, beta, x);
CHECK_ULP_CLOSE(expected, computed, 0);
expected = (alpha + 1) + (alpha + beta +2)*(x-1)/2;
computed = jacobi(1, alpha, beta, x);
CHECK_ULP_CLOSE(expected, computed, 0);
expected = (alpha + 1)*(alpha+2)/2 + (alpha + 2)*(alpha + beta + 3)*(x-1)/2 + (alpha + beta + 3)*(alpha + beta + 4)*(x-1)*(x-1)/8;
computed = jacobi(2, alpha, beta, x);
CHECK_ULP_CLOSE(expected, computed, 1);
}
}
}
}
template<typename Real>
void test_symmetry()
{
Real h = 1/Real(4);
for (Real alpha = -1 + h; alpha < 2; alpha += h) {
for (Real beta = -1 + h; beta < 2; beta += h) {
for (Real x = -1; x < 1; x += h) {
for (size_t n = 0; n < 20; n += 2)
{
Real expected = jacobi(n, beta, alpha , -x);
Real computed = jacobi(n, alpha, beta, x);
CHECK_ULP_CLOSE(expected, computed, 0);
expected = jacobi(n+1, beta, alpha, -x);
computed = -jacobi(n+1, alpha, beta, x);
CHECK_ULP_CLOSE(expected, computed, 0);
}
}
}
}
}
template<typename Real>
void test_derivative()
{
Real h = 1/Real(4);
for (Real alpha = -1 + h; alpha < 2; alpha += h) {
for (Real beta = -1 + h; beta < 2; beta += h) {
for (Real x = -1; x < 1; x += h) {
Real expected = 0;
Real computed = jacobi_derivative(0, alpha, beta, x, 1);
CHECK_ULP_CLOSE(expected, computed, 0);
expected = (alpha + beta + 2)/2;
computed = jacobi_derivative(1, alpha, beta, x, 1);
CHECK_ULP_CLOSE(expected, computed, 0);
expected = (alpha + 2)*(alpha + beta + 3)/2 + (alpha + beta + 3)*(alpha + beta + 4)*(x-1)/4;
computed = jacobi_derivative(2, alpha, beta, x, 1);
CHECK_ULP_CLOSE(expected, computed, 0);
expected = (alpha + beta + 3)*(alpha + beta + 4)/4;
computed = jacobi_derivative(2, alpha, beta, x, 2);
CHECK_ULP_CLOSE(expected, computed, 0);
}
}
}
}
int main()
{
#ifdef __STDCPP_FLOAT32_T__
test_symmetry<std::float32_t>();
test_derivative<std::float32_t>();
#else
test_symmetry<float>();
test_derivative<float>();
#endif
#ifdef __STDCPP_FLOAT64_T__
test_to_quadratic<std::float64_t>();
test_symmetry<std::float64_t>();
test_derivative<std::float64_t>();
#else
test_to_quadratic<double>();
test_symmetry<double>();
test_derivative<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_to_quadratic<long double>();
test_symmetry<long double>();
test_derivative<long double>();
#endif
#ifdef BOOST_HAS_FLOAT128
test_to_quadratic<boost::multiprecision::float128>();
test_symmetry<boost::multiprecision::float128>();
test_derivative<boost::multiprecision::float128>();
#endif
return boost::math::test::report_errors();
}
|