1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*
* Copyright Nick Thompson, 2024
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include "test_functions_for_optimization.hpp"
#include <boost/math/optimization/jso.hpp>
#include <random>
#include <limits>
using boost::math::optimization::jso;
using boost::math::optimization::jso_parameters;
using boost::math::optimization::detail::weighted_lehmer_mean;
void test_weighted_lehmer_mean() {
size_t n = 50;
std::vector<double> weights(n, 1.0);
std::vector<double> values(n, 2.5);
// Technically, this is not a fully general weighted Lehmer mean,
// but just a weighted contraharmonic mean.
// So we have a few more invariants available to us:
CHECK_ULP_CLOSE(2.5, weighted_lehmer_mean(values, weights), n);
std::mt19937_64 gen(12345);
std::uniform_real_distribution<double> unif(std::numeric_limits<double>::epsilon(),1);
for (size_t i = 0; i < n; ++i) {
weights[i] = unif(gen);
values[i] = unif(gen);
}
auto mean = weighted_lehmer_mean(values, weights);
CHECK_LE(mean, 1.0);
CHECK_LE(std::numeric_limits<double>::epsilon(), mean);
}
template <class Real> void test_ackley() {
std::cout << "Testing jSO on Ackley function . . .\n";
using ArgType = std::array<Real, 2>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds = {-5, -5};
jso_params.upper_bounds = {5, 5};
std::mt19937_64 gen(12345);
auto local_minima = jso(ackley<Real>, jso_params, gen);
CHECK_LE(std::abs(local_minima[0]), 10 * std::numeric_limits<Real>::epsilon());
CHECK_LE(std::abs(local_minima[1]), 10 * std::numeric_limits<Real>::epsilon());
// Does it work with a lambda?
auto ack = [](std::array<Real, 2> const &x) { return ackley<Real>(x); };
local_minima = jso(ack, jso_params, gen);
CHECK_LE(std::abs(local_minima[0]), 10 * std::numeric_limits<Real>::epsilon());
CHECK_LE(std::abs(local_minima[1]), 10 * std::numeric_limits<Real>::epsilon());
// Test that if an intial guess is the exact solution, the returned solution is the exact solution:
std::array<Real, 2> initial_guess{0, 0};
jso_params.initial_guess = &initial_guess;
local_minima = jso(ack, jso_params, gen);
CHECK_EQUAL(local_minima[0], Real(0));
CHECK_EQUAL(local_minima[1], Real(0));
}
template <class Real> void test_rosenbrock_saddle() {
std::cout << "Testing jSO on Rosenbrock saddle . . .\n";
using ArgType = std::array<Real, 2>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds = {0.5, 0.5};
jso_params.upper_bounds = {2.048, 2.048};
std::mt19937_64 gen(234568);
auto local_minima = jso(rosenbrock_saddle<Real>, jso_params, gen);
CHECK_ABSOLUTE_ERROR(Real(1), local_minima[0], 10 * std::numeric_limits<Real>::epsilon());
CHECK_ABSOLUTE_ERROR(Real(1), local_minima[1], 10 * std::numeric_limits<Real>::epsilon());
// Does cancellation work?
std::atomic<bool> cancel = true;
gen.seed(12345);
local_minima =
jso(rosenbrock_saddle<Real>, jso_params, gen, std::numeric_limits<Real>::quiet_NaN(), &cancel);
CHECK_GE(std::abs(local_minima[0] - Real(1)), std::sqrt(std::numeric_limits<Real>::epsilon()));
}
template <class Real> void test_rastrigin() {
std::cout << "Testing jSO on Rastrigin function (global minimum = (0,0,...,0))\n";
using ArgType = std::vector<Real>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds.resize(3, static_cast<Real>(-5.12));
jso_params.upper_bounds.resize(3, static_cast<Real>(5.12));
jso_params.initial_population_size = 5000;
jso_params.max_function_evaluations = 1000000;
std::mt19937_64 gen(34567);
// By definition, the value of the function which a target value is provided must be <= target_value.
Real target_value = 1e-3;
auto local_minima = jso(rastrigin<Real>, jso_params, gen, target_value);
CHECK_LE(rastrigin(local_minima), target_value);
}
// Tests NaN return types and return type != input type:
void test_sphere() {
std::cout << "Testing jSO on sphere . . .\n";
using ArgType = std::vector<float>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds.resize(8, -1);
jso_params.upper_bounds.resize(8, 1);
std::mt19937_64 gen(56789);
auto local_minima = jso(sphere, jso_params, gen);
for (auto x : local_minima) {
CHECK_ABSOLUTE_ERROR(0.0f, x, 2e-4f);
}
}
template<typename Real>
void test_three_hump_camel() {
std::cout << "Testing jSO on three hump camel . . .\n";
using ArgType = std::array<Real, 2>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds[0] = -5.0;
jso_params.lower_bounds[1] = -5.0;
jso_params.upper_bounds[0] = 5.0;
jso_params.upper_bounds[1] = 5.0;
std::mt19937_64 gen(56789);
auto local_minima = jso(three_hump_camel<Real>, jso_params, gen);
for (auto x : local_minima) {
CHECK_ABSOLUTE_ERROR(0.0f, x, 2e-4f);
}
}
template<typename Real>
void test_beale() {
std::cout << "Testing jSO on the Beale function . . .\n";
using ArgType = std::array<Real, 2>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds[0] = -5.0;
jso_params.lower_bounds[1] = -5.0;
jso_params.upper_bounds[0]= 5.0;
jso_params.upper_bounds[1]= 5.0;
std::mt19937_64 gen(56789);
auto local_minima = jso(beale<Real>, jso_params, gen);
CHECK_ABSOLUTE_ERROR(Real(3), local_minima[0], Real(2e-4));
CHECK_ABSOLUTE_ERROR(Real(1)/Real(2), local_minima[1], Real(2e-4));
}
#if BOOST_MATH_TEST_UNITS_COMPATIBILITY
void test_dimensioned_sphere() {
std::cout << "Testing jso on dimensioned sphere . . .\n";
using ArgType = std::vector<quantity<length>>;
auto params = jso_parameters<ArgType>();
params.lower_bounds.resize(4, -1.0*meter);
params.upper_bounds.resize(4, 1*meter);
params.threads = 2;
std::mt19937_64 gen(56789);
auto local_minima = jso(dimensioned_sphere, params, gen);
}
#endif
int main() {
#if defined(__clang__) || defined(_MSC_VER)
test_ackley<float>();
test_ackley<double>();
test_rosenbrock_saddle<double>();
test_rastrigin<double>();
test_three_hump_camel<float>();
test_beale<double>();
#endif
#if BOOST_MATH_TEST_UNITS_COMPATIBILITY
test_dimensioned_sphere();
#endif
test_sphere();
test_weighted_lehmer_mean();
return boost::math::test::report_errors();
}
|