1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
// (C) Copyright Matt Borland and Nick Thompson 2022.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "math_unit_test.hpp"
#include <cmath>
#include <vector>
#include <boost/math/special_functions/logsumexp.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/tools/random_vector.hpp>
template <typename Real>
void test()
{
using boost::math::logsumexp;
using std::log;
using std::exp;
// Spot check 2 values
// Also validate that 2 values does not attempt to instantiate the iterator version
// https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html
// Calculated at higher precision using wolfram alpha
Real x1 = 1e-50l;
Real x2 = 2.5e-50l;
Real spot1 = static_cast<Real>(exp(x1));
Real spot2 = static_cast<Real>(exp(x2));
Real spot12 = logsumexp(x1, x2);
CHECK_ULP_CLOSE(log(spot1 + spot2), spot12, 1);
// Spot check 3 values and compare result of each different interface
Real x3 = 5e-50l;
Real spot3 = static_cast<Real>(exp(x3));
std::vector<Real> x_vals {x1, x2, x3};
Real spot123 = logsumexp(x1, x2, x3);
Real spot123_container = logsumexp(x_vals);
Real spot123_iter = logsumexp(x_vals.begin(), x_vals.end());
CHECK_EQUAL(spot123, spot123_container);
CHECK_EQUAL(spot123_container, spot123_iter);
CHECK_ULP_CLOSE(log(spot1 + spot2 + spot3), spot123, 1);
// Spot check 4 values with repeated largest value
Real x4 = x3;
Real spot4 = spot3;
Real spot1234 = logsumexp(x1, x2, x3, x4);
x_vals.emplace_back(x4);
Real spot1234_container = logsumexp(x_vals);
CHECK_EQUAL(spot1234, spot1234_container);
CHECK_ULP_CLOSE(log(spot1 + spot2 + spot3 + spot4), spot1234, 1);
// Check with a value of vastly different order of magnitude
Real x5 = 1.0l;
Real spot5 = static_cast<Real>(exp(x5));
x_vals.emplace_back(x5);
Real spot12345 = logsumexp(x_vals);
CHECK_ULP_CLOSE(log(spot1 + spot2 + spot3 + spot4 + spot5), spot12345, 1);
}
// The naive method of computation should overflow:
template<typename Real>
void test_overflow()
{
using boost::math::logsumexp;
using std::exp;
using std::log;
Real x = ((std::numeric_limits<Real>::max)()/2);
Real naive_result = log(exp(x) + exp(x));
CHECK_EQUAL(std::isfinite(naive_result), false);
Real result = logsumexp(x, x);
CHECK_EQUAL(std::isfinite(result), true);
CHECK_ULP_CLOSE(result, x + boost::math::constants::ln_two<Real>(), 1);
}
template <typename Real>
void test_random()
{
using std::exp;
using std::log;
using boost::math::logsumexp;
using boost::math::generate_random_vector;
std::vector<Real> test_values = generate_random_vector(128, 0, Real(1e-50l), Real(1e-40l));
Real naive_exp_sum = 0;
for(const auto& val : test_values)
{
naive_exp_sum += exp(val);
}
CHECK_ULP_CLOSE(log(naive_exp_sum), logsumexp(test_values), 1);
}
int main (void)
{
test<float>();
test<double>();
test<long double>();
test_overflow<float>();
test_overflow<double>();
test_overflow<long double>();
test_random<float>();
test_random<double>();
test_random<long double>();
return boost::math::test::report_errors();
}
|