1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/*
* Copyright Nick Thompson, 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <random>
#include <boost/math/interpolators/makima.hpp>
#include <boost/circular_buffer.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using boost::math::interpolators::makima;
template<typename Real>
void test_constant()
{
std::vector<Real> x{0,1,2,3, 9, 22, 81};
std::vector<Real> y(x.size());
for (auto & t : y) {
t = 7;
}
auto x_copy = x;
auto y_copy = y;
auto akima = makima(std::move(x_copy), std::move(y_copy));
for (Real t = x[0]; t <= x.back(); t += Real(0.25)) {
CHECK_ULP_CLOSE(Real(7), akima(t), 2);
CHECK_ULP_CLOSE(Real(0), akima.prime(t), 2);
}
boost::circular_buffer<Real> x_buf(x.size());
for (auto & t : x) {
x_buf.push_back(t);
}
boost::circular_buffer<Real> y_buf(x.size());
for (auto & t : y) {
y_buf.push_back(t);
}
auto circular_akima = makima(std::move(x_buf), std::move(y_buf));
for (Real t = x[0]; t <= x.back(); t += Real(0.25)) {
CHECK_ULP_CLOSE(Real(7), circular_akima(t), 2);
CHECK_ULP_CLOSE(Real(0), akima.prime(t), 2);
}
circular_akima.push_back(x.back() + 1, 7);
CHECK_ULP_CLOSE(Real(0), circular_akima.prime(x.back()+1), 2);
}
template<typename Real>
void test_linear()
{
std::vector<Real> x{0,1,2,3};
std::vector<Real> y{0,1,2,3};
auto x_copy = x;
auto y_copy = y;
auto akima = makima(std::move(x_copy), std::move(y_copy));
CHECK_ULP_CLOSE(y[0], akima(x[0]), 0);
CHECK_ULP_CLOSE(Real(1)/Real(2), akima(Real(1)/Real(2)), 10);
CHECK_ULP_CLOSE(y[1], akima(x[1]), 0);
CHECK_ULP_CLOSE(Real(3)/Real(2), akima(Real(3)/Real(2)), 10);
CHECK_ULP_CLOSE(y[2], akima(x[2]), 0);
CHECK_ULP_CLOSE(Real(5)/Real(2), akima(Real(5)/Real(2)), 10);
CHECK_ULP_CLOSE(y[3], akima(x[3]), 0);
x.resize(45);
y.resize(45);
for (size_t i = 0; i < x.size(); ++i) {
x[i] = i;
y[i] = i;
}
x_copy = x;
y_copy = y;
akima = makima(std::move(x_copy), std::move(y_copy));
for (Real t = 0; t < x.back(); t += Real(0.5)) {
CHECK_ULP_CLOSE(t, akima(t), 0);
CHECK_ULP_CLOSE(Real(1), akima.prime(t), 0);
}
x_copy = x;
y_copy = y;
// Test endpoint derivatives:
akima = makima(std::move(x_copy), std::move(y_copy), Real(1), Real(1));
for (Real t = 0; t < x.back(); t += Real(0.5)) {
CHECK_ULP_CLOSE(t, akima(t), 0);
CHECK_ULP_CLOSE(Real(1), akima.prime(t), 0);
}
boost::circular_buffer<Real> x_buf(x.size());
for (auto & t : x) {
x_buf.push_back(t);
}
boost::circular_buffer<Real> y_buf(x.size());
for (auto & t : y) {
y_buf.push_back(t);
}
auto circular_akima = makima(std::move(x_buf), std::move(y_buf));
for (Real t = x[0]; t <= x.back(); t += Real(0.25)) {
CHECK_ULP_CLOSE(t, circular_akima(t), 2);
CHECK_ULP_CLOSE(Real(1), circular_akima.prime(t), 2);
}
circular_akima.push_back(x.back() + 1, y.back()+1);
CHECK_ULP_CLOSE(Real(y.back() + 1), circular_akima(Real(x.back()+1)), 2);
CHECK_ULP_CLOSE(Real(1), circular_akima.prime(Real(x.back()+1)), 2);
}
template<typename Real>
void test_interpolation_condition()
{
for (size_t n = 4; n < 50; ++n) {
std::vector<Real> x(n);
std::vector<Real> y(n);
std::default_random_engine rd;
std::uniform_real_distribution<Real> dis(0,1);
Real x0 = dis(rd);
x[0] = x0;
y[0] = dis(rd);
for (size_t i = 1; i < n; ++i) {
x[i] = x[i-1] + dis(rd);
y[i] = dis(rd);
}
auto x_copy = x;
auto y_copy = y;
auto s = makima(std::move(x_copy), std::move(y_copy));
//std::cout << "s = " << s << "\n";
for (size_t i = 0; i < x.size(); ++i) {
CHECK_ULP_CLOSE(y[i], s(x[i]), 2);
}
x_copy = x;
y_copy = y;
// The interpolation condition is not affected by the endpoint derivatives, even though these derivatives might be super weird:
s = makima(std::move(x_copy), std::move(y_copy), Real(0), Real(0));
//std::cout << "s = " << s << "\n";
for (size_t i = 0; i < x.size(); ++i) {
CHECK_ULP_CLOSE(y[i], s(x[i]), 2);
}
}
}
int main()
{
#if (__GNUC__ > 7) || defined(_MSC_VER) || defined(__clang__)
#ifdef __STDCPP_FLOAT32_T__
test_constant<std::float32_t>();
test_linear<std::float32_t>();
test_interpolation_condition<std::float32_t>();
#else
test_constant<float>();
test_linear<float>();
test_interpolation_condition<float>();
#endif
#ifdef __STDCPP_FLOAT64_T__
test_constant<std::float64_t>();
test_linear<std::float64_t>();
test_interpolation_condition<std::float64_t>();
#else
test_constant<double>();
test_linear<double>();
test_interpolation_condition<double>();
#endif
test_constant<long double>();
test_linear<long double>();
test_interpolation_condition<long double>();
#ifdef BOOST_HAS_FLOAT128
test_constant<float128>();
test_linear<float128>();
#endif
#endif
return boost::math::test::report_errors();
}
|