File: math_unit_test.hpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (435 lines) | stat: -rw-r--r-- 20,152 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
// Copyright Nick Thompson, 2019
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TEST_TEST_HPP
#define BOOST_MATH_TEST_TEST_HPP
#include <atomic>
#include <iostream>
#include <iomanip>
#include <cmath> // for std::isnan
#include <string>
#include <type_traits>
#include <boost/math/tools/assert.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/special_functions/trunc.hpp>
#if defined __has_include
#  if __has_include(<cxxabi.h>)
#define BOOST_MATH_HAS_CXX_ABI 1
#    include <cxxabi.h>
#  endif
#endif
namespace boost { namespace math { namespace  test {

namespace detail {
    static std::atomic<int64_t> global_error_count{0};
    static std::atomic<int64_t> total_ulp_distance{0};

    inline std::string demangle(char const * name)
    {
        int status = 0;
        std::size_t size = 0;
#if BOOST_MATH_HAS_CXX_ABI
        std::string s {abi::__cxa_demangle( name, NULL, &size, &status )};
#else
        std::string s {name};
#endif
        return s;
    }
}

template<class Real>
bool check_mollified_close(Real expected, Real computed, Real tol, std::string const & filename, std::string const & function, int line)
{
    using std::isnan;
    BOOST_MATH_ASSERT_MSG(!isnan(tol), "Tolerance cannot be a nan.");
    BOOST_MATH_ASSERT_MSG(!isnan(expected), "Expected value cannot be a nan.");
    BOOST_MATH_ASSERT_MSG(tol >= 0, "Tolerance must be non-negative.");
    if (isnan(computed)) {
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m Computed value is a nan\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }
    using std::max;
    using std::abs;
    Real denom = (max)(abs(expected), Real(1));
    Real mollified_relative_error = abs(expected - computed)/denom;
    if (mollified_relative_error > tol)
    {
        Real dist = abs(boost::math::float_distance(expected, computed));
        detail::total_ulp_distance += static_cast<int64_t>(dist);
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m Mollified relative error in " << detail::demangle(typeid(Real).name())<< " precision is " << mollified_relative_error
                  << ", which exceeds " << tol << ", error/tol  = " << mollified_relative_error/tol << ".\n"
                  << std::setprecision(std::numeric_limits<Real>::max_digits10) << std::showpos
                  << "  Expected: " << std::defaultfloat << std::fixed << expected << std::hexfloat << " = " << expected << "\n"
                  << "  Computed: " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n"
                  << std::defaultfloat
                  << "  ULP distance: " << dist << "\n";
        std::cerr.flags(f);
        ++detail::global_error_count;

        return false;
    }
    return true;
}

template<class PreciseReal, class Real>
bool check_ulp_close(PreciseReal expected1, Real computed, size_t ulps, std::string const & filename, std::string const & function, int line)
{
    using std::max;
    using std::abs;
    using std::isnan;
    using boost::math::lltrunc;
    // Of course integers can be expected values, and they are exact:
    if (!std::is_integral<PreciseReal>::value) {
    if (boost::math::isnan(expected1)) {
        std::ostringstream oss;
        oss << "Error in CHECK_ULP_CLOSE: Expected value cannot be a nan. Callsite: " << filename << ":" << function << ":" << line << "."; 
        throw std::domain_error(oss.str());
    }
        if (sizeof(PreciseReal) < sizeof(Real)) {
            std::ostringstream err;
            err << "\n\tThe expected number must be computed in higher (or equal) precision than the number being tested.\n";
            err << "\tType of expected is " << detail::demangle(typeid(PreciseReal).name()) << ", which occupies " << sizeof(PreciseReal) << " bytes.\n";
            err << "\tType of computed is " << detail::demangle(typeid(Real).name()) << ", which occupies " << sizeof(Real) << " bytes.\n";
            throw std::logic_error(err.str());
        }
    }

    if (boost::math::isnan(computed))
    {
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m Computed value is a nan\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }

    Real expected = Real(expected1);
    Real dist = abs(boost::math::float_distance(expected, computed));
    if (dist > ulps)
    {
        detail::total_ulp_distance += static_cast<int64_t>(lltrunc(dist));
        Real abs_expected = abs(expected);
        Real denom = (max)(abs_expected, Real(1));
        Real mollified_relative_error = abs(expected - computed)/denom;
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m ULP distance in " << detail::demangle(typeid(Real).name())<< " precision is " << dist
                  << ", which exceeds " << ulps;
                  if (ulps > 0)
                  {
                      std::cerr << ", error/ulps  = " << dist/static_cast<Real>(ulps) << ".\n";
                  }
                  else
                  {
                      std::cerr << ".\n";
                  }
        std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10) << std::showpos
                  << "  Expected: " << std::defaultfloat << std::fixed << expected << std::hexfloat << " = " << expected << "\n"
                  << "  Computed: " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n"
                  << std::defaultfloat
                  << "  Mollified relative error: " << mollified_relative_error << "\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }
    return true;
}

template<typename Real>
bool check_le(Real lesser, Real greater, std::string const & filename, std::string const & function, int line)
{
    using std::max;
    using std::abs;
    using std::isnan;

    if (std::is_floating_point<Real>::value) {
        if (boost::math::isnan(lesser))
        {
            std::ios_base::fmtflags f( std::cerr.flags() );
            std::cerr << std::setprecision(3);
            std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                    << " \033[0m Lesser value is a nan\n";
            std::cerr.flags(f);
            ++detail::global_error_count;
            return false;
        }

        if (boost::math::isnan(greater))
        {
            std::ios_base::fmtflags f( std::cerr.flags() );
            std::cerr << std::setprecision(3);
            std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                    << " \033[0m Greater value is a nan\n";
            std::cerr.flags(f);
            ++detail::global_error_count;
            return false;
        }
    }

    if (lesser > greater)
    {
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m Condition " << lesser << " \u2264 " << greater << " is violated in " << detail::demangle(typeid(Real).name()) << " precision.\n";
        std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10) << std::showpos
                  << "  \"Lesser\" : " << std::defaultfloat << std::fixed << lesser  << " = " << std::scientific << lesser  << std::hexfloat << " = " << lesser << "\n"
                  << "  \"Greater\": " << std::defaultfloat << std::fixed << greater << " = " << std::scientific << greater << std::hexfloat << " = " << greater << "\n"
                  << std::defaultfloat;
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }
    return true;
}


template<class PreciseReal, class Real>
bool check_conditioned_error(Real abscissa, PreciseReal expected1, PreciseReal expected_derivative, Real computed, Real acceptable_badness, std::string const & filename, std::string const & function, int line)
{
    using std::max;
    using std::abs;
    using std::isnan;
    // Of course integers can be expected values, and they are exact:
    if (!std::is_integral<PreciseReal>::value) {
        BOOST_MATH_ASSERT_MSG(sizeof(PreciseReal) >= sizeof(Real),
                         "The expected number must be computed in higher (or equal) precision than the number being tested.");
        BOOST_MATH_ASSERT_MSG(!isnan(abscissa), "Expected abscissa cannot be a nan.");
        BOOST_MATH_ASSERT_MSG(!isnan(expected1), "Expected value cannot be a nan.");
        BOOST_MATH_ASSERT_MSG(!isnan(expected_derivative), "Expected derivative cannot be a nan.");
    }
    BOOST_MATH_ASSERT_MSG(acceptable_badness >= 1, "Acceptable badness scale must be >= 1, and in general should = 1 exactly.");

    if (isnan(computed))
    {
        std::ios_base::fmtflags f(std::cerr.flags());
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m Computed value is a nan\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }

    Real mu = std::numeric_limits<Real>::epsilon()/2;
    Real expected = Real(expected1);
    // Relative error is undefined. Therefore we must use |f(x(1+eps))| le mu|xf'(x)|.
    if (expected == 0)
    {
        Real tol = acceptable_badness*mu*abs(abscissa*expected_derivative);
        if (abs(computed) > tol)
        {
            std::ios_base::fmtflags f( std::cerr.flags() );
            std::cerr << std::setprecision(3);
            std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n";
            std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10) << std::showpos;
            std::cerr << "\033[0m  Error at abscissa " << std::defaultfloat << std::fixed << abscissa << " = " << std::hexfloat << abscissa << "\n";
            std::cerr << "  Given that the expected value is zero, the computed value in " << detail::demangle(typeid(Real).name()) << " precision  must satisfy |f(x)| <= " << tol << ".\n";
            std::cerr << "  But the computed value is " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n";
            std::cerr.flags(f);
            ++detail::global_error_count;
            return false;            
        }
    }
    // 1 ULP accuracy * acceptable_badness is always acceptable, independent of condition number:
    if (abs(boost::math::float_distance(Real(expected), computed)) <= acceptable_badness)
    {
        return true;
    }
    Real expected_prime = Real(expected_derivative);
    PreciseReal precise_abscissa = abscissa;
    PreciseReal cond = abs(precise_abscissa*expected_prime/expected);
    PreciseReal relative_error = abs((expected - PreciseReal(computed))/expected);
    // If the condition number is small, then we revert to allowing 1ULP accuracy, i.e., one incorrect bit.
    Real tol = cond*mu;
    tol *= acceptable_badness;
    if (relative_error > tol)
    {
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << "\n";
        std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10);
        std::cerr << "\033[0m  The relative error at abscissa x = " << std::defaultfloat << std::fixed << abscissa << " = " << std::hexfloat << abscissa
                  << " in " << detail::demangle(typeid(Real).name()) << " precision is " << std::scientific << relative_error << "\n"
                  << "  This exceeds the tolerance " << tol << "\n"
                  << std::showpos
                  << "  Expected: " << std::defaultfloat << std::fixed << expected << " = " << std::scientific << expected << std::hexfloat << " = " << expected << "\n"
                  << "  Computed: " << std::defaultfloat << std::fixed << computed << " = " << std::scientific << computed << std::hexfloat << " = " << computed << "\n"
                  << "  Condition number of function evaluation: " << std::noshowpos << std::defaultfloat << std::scientific << cond  << " = " << std::fixed << cond << "\n"
                  << "  Badness scale required to make this message go away: " << std::defaultfloat << relative_error/(cond*mu) << "\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }
    return true;
}


template<class PreciseReal, class Real>
bool check_absolute_error(PreciseReal expected1, Real computed, Real acceptable_error, std::string const & filename, std::string const & function, int line)
{
    using std::max;
    using std::abs;
    using std::isnan;
    // Of course integers can be expected values, and they are exact:
    if (!std::is_integral<PreciseReal>::value) {
        BOOST_MATH_ASSERT_MSG(sizeof(PreciseReal) >= sizeof(Real),
                         "The expected number must be computed in higher (or equal) precision than the number being tested.");
        BOOST_MATH_ASSERT_MSG(!isnan(expected1), "Expected value cannot be a nan (use CHECK_NAN if this is your intention).");
    }
    BOOST_MATH_ASSERT_MSG(acceptable_error > 0, "Error must be > 0.");

    if (isnan(computed))
    {
        std::ios_base::fmtflags f(std::cerr.flags());
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
                  << " \033[0m Computed value is a nan\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }

    Real expected = Real(expected1);
    Real error = abs(expected - computed);
    if (error > acceptable_error)
    {
        std::ios_base::fmtflags f( std::cerr.flags() );
        std::cerr << std::setprecision(3);
        std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << "\n";
        std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10);
        std::cerr << "\033[0m  The absolute error in " << detail::demangle(typeid(Real).name()) << " precision is " << std::scientific << error << "\n"
                  << "  This exceeds the acceptable error " << acceptable_error << "\n"
                  << std::showpos
                  << "  Expected: " << std::defaultfloat << std::fixed << expected << " = " << std::scientific << expected << std::hexfloat << " = " << expected << "\n"
                  << "  Computed: " << std::defaultfloat << std::fixed << computed << " = " << std::scientific << computed<< std::hexfloat << " = " << computed << "\n"
                  << "  Error/Acceptable error: " << std::defaultfloat << error/acceptable_error << "\n";
        std::cerr.flags(f);
        ++detail::global_error_count;
        return false;
    }
    return true;
}

template<class Real>
bool check_nan(Real x, std::string const & filename, std::string const & function, int line)
{
    using std::isnan;
    if (!isnan(x)) {
      std::ios_base::fmtflags f( std::cerr.flags() );
      std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << "\n";
      std::cerr << "\033[0m  The computed value should be a nan, but is instead " << std::defaultfloat << std::fixed << x << " = " << std::scientific << x << std::hexfloat << " = " << x << "\n";
      std::cerr.flags(f);
      ++detail::global_error_count;
      return false;
    }
    return true;
}

template<class Real>
bool check_equal(Real x, Real y, std::string const & filename, std::string const & function, int line)
{
  using std::isnan;
  if (x != y) {
    std::ios_base::fmtflags f( std::cerr.flags() );
    std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << "\n";
    std::cerr << "\033[0m  Condition '" << x << " == " << y << "' is not satisfied:\n";
    if (std::is_floating_point<Real>::value) {
      std::cerr << "  Expected =  " << std::defaultfloat << std::fixed << x << " = " << std::scientific << x << std::hexfloat << " = " << x << "\n";
      std::cerr << "  Computed =  " << std::defaultfloat << std::fixed << y << " = " << std::scientific << y << std::hexfloat << " = " << y << "\n";
    } else {
      std::cerr << "  Expected: " << x << " = " << "0x" << std::hex << x << "\n";
      std::cerr << std::dec;
      std::cerr << "  Computed: " << y << " = " << "0x" << std::hex << y << "\n";
    }
    std::cerr.flags(f);
    ++detail::global_error_count;
    return false;
  }
  return true;
}


bool check_true(bool condition, std::string const & filename, std::string const & function, int line)
{
  if (!condition) {
    std::ios_base::fmtflags f( std::cerr.flags() );
    std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << "\n";
    std::cerr << "\033[0m  Boolean condition is not satisfied:\n";
    std::cerr.flags(f);
    ++detail::global_error_count;
    return false;
  }
  return true;
}

void report_non_throw(const std::string& file, int line)
{
   std::cerr << "Expected exception not thrown in test at: " << file << ":" << line << std::endl;
   ++detail::global_error_count;
}

void report_incorrect_throw(const std::string& file, int line)
{
   std::cerr << "Exception of the wrong type thrown in test at: " << file << ":" << line << std::endl;
   ++detail::global_error_count;
}

int report_errors()
{
    if (detail::global_error_count > 0)
    {
        std::cerr << "\033[0;31mError count: " << detail::global_error_count;
        if (detail::total_ulp_distance > 0) {
            std::cerr << ", total ulp distance = " << detail::total_ulp_distance << "\n\033[0m";
        }
        else {
            // else we overflowed the ULPs counter and all we could print is a bizarre negative number.
            std::cerr << "\n\033[0m";
        }

        detail::global_error_count = 0;
        detail::total_ulp_distance = 0;
        return 1;
    }
    std::cout << "\x1B[32mNo errors detected.\n\033[0m";
    return 0;
}

}}}

#define CHECK_MOLLIFIED_CLOSE(X, Y, Z) boost::math::test::check_mollified_close< typename std::remove_reference<decltype((Y))>::type>((X), (Y), (Z), __FILE__, __func__, __LINE__)

#define CHECK_ULP_CLOSE(X, Y, Z) boost::math::test::check_ulp_close((X), (Y), (Z), __FILE__, __func__, __LINE__)

#define CHECK_GE(X, Y) boost::math::test::check_le((Y), (X), __FILE__, __func__, __LINE__)

#define CHECK_LE(X, Y) boost::math::test::check_le((X), (Y), __FILE__, __func__, __LINE__)

#define CHECK_NAN(X) boost::math::test::check_nan((X), __FILE__, __func__, __LINE__)

#define CHECK_EQUAL(X, Y) boost::math::test::check_equal((X), (Y), __FILE__, __func__, __LINE__)

#define CHECK_CONDITIONED_ERROR(V, W, X, Y, Z) boost::math::test::check_conditioned_error((V), (W), (X), (Y), (Z), __FILE__, __func__, __LINE__)

#define CHECK_ABSOLUTE_ERROR(X, Y, Z) boost::math::test::check_absolute_error((X), (Y), (Z), __FILE__, __func__, __LINE__)

#define CHECK_TRUE(X) boost::math::test::check_true((X), __FILE__, __func__, __LINE__)

#define CHECK_THROW(x, what) try{ x; boost::math::test::report_non_throw(__FILE__, __LINE__); }catch(const what&){} catch(...){ boost::math::test::report_incorrect_throw(__FILE__, __LINE__); }

#endif