1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// Boost pow_test.cpp test file
// Tests the pow function
// (C) Copyright Bruno Lalande 2008.
// (C) Copyright Matt Borland 2024.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cmath>
#include <string>
#include <iostream>
#include <boost/math/concepts/real_concept.hpp>
#include "../include_private/boost/math/tools/test.hpp"
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/math/tools/assert.hpp>
#include <boost/math/special_functions/pow.hpp>
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
BOOST_TYPEOF_REGISTER_TYPE(boost::math::concepts::real_concept)
using namespace boost;
using namespace boost::math;
template <int N, class T>
void test_pow(T base)
{
typedef typename tools::promote_args<T>::type result_type;
BOOST_MATH_STD_USING
if ((base == 0) && N < 0)
{
#ifndef BOOST_MATH_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(math::pow<N>(base), std::overflow_error);
#endif
}
else
{
BOOST_CHECK_CLOSE(math::pow<N>(base),
pow(static_cast<result_type>(base), static_cast<result_type>(N)),
boost::math::tools::epsilon<result_type>() * 100 * 400); // 400 eps as a %
}
}
template <int N, class T>
void test_with_big_bases()
{
for (T base = T(); base < T(1000); ++base)
test_pow<N>(base);
}
template <int N, class T>
void test_with_small_bases()
{
T base = 0.9f;
for (int i = 0; i < 10; ++i)
{
base += base/50;
test_pow<N>(base);
}
}
template <class T, int Factor>
void test_with_small_exponents()
{
test_with_big_bases<0, T>();
test_with_big_bases<Factor*1, T>();
test_with_big_bases<Factor*2, T>();
test_with_big_bases<Factor*3, T>();
test_with_big_bases<Factor*5, T>();
test_with_big_bases<Factor*6, T>();
test_with_big_bases<Factor*7, T>();
test_with_big_bases<Factor*8, T>();
test_with_big_bases<Factor*9, T>();
test_with_big_bases<Factor*10, T>();
test_with_big_bases<Factor*11, T>();
test_with_big_bases<Factor*12, T>();
}
template <class T, int Factor>
void test_with_big_exponents()
{
test_with_small_bases<Factor*50, T>();
test_with_small_bases<Factor*100, T>();
test_with_small_bases<Factor*150, T>();
test_with_small_bases<Factor*200, T>();
test_with_small_bases<Factor*250, T>();
test_with_small_bases<Factor*300, T>();
test_with_small_bases<Factor*350, T>();
test_with_small_bases<Factor*400, T>();
test_with_small_bases<Factor*450, T>();
test_with_small_bases<Factor*500, T>();
}
void test_return_types()
{
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>('\1')), double>::value), "Return type mismatch");
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(L'\2')), double>::value), "Return type mismatch");
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(3)), double>::value), "Return type mismatch");
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(4u)), double>::value), "Return type mismatch");
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(5ul)), double>::value), "Return type mismatch");
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(6.0f)), float>::value), "Return type mismatch");
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(7.0)), double>::value), "Return type mismatch");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
static_assert((boost::math::is_same<BOOST_TYPEOF(pow<2>(7.0l)), long double>::value), "Return type mismatch");
#endif
}
namespace boost { namespace math { namespace policies {
template <class T>
T user_overflow_error(const char*, const char*, const T&)
{ return T(123.45); }
}}}
namespace boost { namespace math { namespace policies {
template <class T>
T user_indeterminate_result_error(const char*, const char*, const T&)
{ return T(456.78); }
}}}
void test_error_policy()
{
using namespace policies;
BOOST_CHECK(pow<-2>(
0.0,
policy< ::boost::math::policies::overflow_error<user_error> >()
)
== 123.45);
BOOST_CHECK(pow<0>(
0.0,
policy< ::boost::math::policies::indeterminate_result_error<user_error> >()
)
== 456.78);
}
BOOST_AUTO_TEST_CASE( test_main )
{
using namespace std;
cout << "Testing with integral bases and positive small exponents" << endl;
test_with_small_exponents<int, 1>();
cout << "Testing with integral bases and negative small exponents" << endl;
test_with_small_exponents<int, -1>();
cout << "Testing with float precision bases and positive small exponents" << endl;
test_with_small_exponents<float, 1>();
cout << "Testing with float precision bases and negative small exponents" << endl;
test_with_small_exponents<float, -1>();
cout << "Testing with float precision bases and positive big exponents" << endl;
test_with_big_exponents<float, 1>();
cout << "Testing with float precision bases and negative big exponents" << endl;
test_with_big_exponents<float, -1>();
cout << "Testing with double precision bases and positive small exponents" << endl;
test_with_small_exponents<double, 1>();
cout << "Testing with double precision bases and negative small exponents" << endl;
test_with_small_exponents<double, -1>();
cout << "Testing with double precision bases and positive big exponents" << endl;
test_with_big_exponents<double, 1>();
cout << "Testing with double precision bases and negative big exponents" << endl;
test_with_big_exponents<double, -1>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
cout << "Testing with long double precision bases and positive small exponents" << endl;
test_with_small_exponents<long double, 1>();
cout << "Testing with long double precision bases and negative small exponents" << endl;
test_with_small_exponents<long double, -1>();
cout << "Testing with long double precision bases and positive big exponents" << endl;
test_with_big_exponents<long double, 1>();
cout << "Testing with long double precision bases and negative big exponents" << endl;
test_with_big_exponents<long double, -1>();
cout << "Testing with concepts::real_concept precision bases and positive small exponents" << endl;
test_with_small_exponents<boost::math::concepts::real_concept, 1>();
cout << "Testing with concepts::real_concept precision bases and negative small exponents" << endl;
test_with_small_exponents<boost::math::concepts::real_concept, -1>();
cout << "Testing with concepts::real_concept precision bases and positive big exponents" << endl;
test_with_big_exponents<boost::math::concepts::real_concept, 1>();
cout << "Testing with concepts::real_concept precision bases and negative big exponents" << endl;
test_with_big_exponents<boost::math::concepts::real_concept, -1>();
#endif
#ifndef BOOST_NO_CXX14_CONSTEXPR
static_assert(boost::math::pow<8>(2)==256, "Pow is not constexpr");
static_assert(boost::math::pow<9>(2)==512, "Pow is not constexpr");
static_assert(boost::math::pow<2>(2)==4, "Pow is not constexpr");
static_assert(boost::math::pow<1>(2)==2, "Pow is not constexpr");
static_assert(boost::math::pow<0>(2)==1, "Pow is not constexpr");
#endif
test_return_types();
test_error_policy();
}
/*
Running 1 test case...
Testing with integral bases and positive small exponents
Testing with integral bases and negative small exponents
Testing with float precision bases and positive small exponents
Testing with float precision bases and negative small exponents
Testing with float precision bases and positive big exponents
Testing with float precision bases and negative big exponents
Testing with double precision bases and positive small exponents
Testing with double precision bases and negative small exponents
Testing with double precision bases and positive big exponents
Testing with double precision bases and negative big exponents
Testing with long double precision bases and positive small exponents
Testing with long double precision bases and negative small exponents
Testing with long double precision bases and positive big exponents
Testing with long double precision bases and negative big exponents
Testing with concepts::real_concept precision bases and positive small exponents
Testing with concepts::real_concept precision bases and negative small exponents
Testing with concepts::real_concept precision bases and positive big exponents
Testing with concepts::real_concept precision bases and negative big exponents
*** No errors detected
*/
|