File: quartic_roots_test.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (170 lines) | stat: -rw-r--r-- 5,418 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
 * Copyright Nick Thompson, 2021
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#include "math_unit_test.hpp"
#include <random>
#include <boost/math/tools/quartic_roots.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif

using boost::math::tools::quartic_roots;
using std::cbrt;
using std::sqrt;

template<class Real>
void test_zero_coefficients()
{
    Real a = 0;
    Real b = 0;
    Real c = 0;
    Real d = 0;
    Real e = 0;
    auto roots = quartic_roots(a,b,c,d,e);
    CHECK_EQUAL(roots[0], Real(0));
    CHECK_EQUAL(roots[1], Real(0));
    CHECK_EQUAL(roots[2], Real(0));
    CHECK_EQUAL(roots[3], Real(0));

    b = 1;
    e = 1;
    // x^3 + 1 = 0:
    roots = quartic_roots(a,b,c,d,e);
    CHECK_EQUAL(roots[0], Real(-1));
    CHECK_NAN(roots[1]);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);
    e = -1;
    // x^3 - 1 = 0:
    roots = quartic_roots(a,b,c,d,e);
    CHECK_EQUAL(roots[0], Real(1));
    CHECK_NAN(roots[1]);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);

    e = -2;
    // x^3 - 2 = 0
    roots = quartic_roots(a,b,c,d,e);
    CHECK_ULP_CLOSE(roots[0], cbrt(Real(2)), 2);
    CHECK_NAN(roots[1]);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);

    // x^4 -1 = 0
    // x = \pm 1:
    roots = quartic_roots<Real>(1, 0, 0, 0, -1);
    CHECK_ULP_CLOSE(Real(-1), roots[0], 3);
    CHECK_ULP_CLOSE(Real(1), roots[1], 3);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);

    // x^4 - 2 = 0 \implies x = \pm sqrt(sqrt(2))
    roots = quartic_roots<Real>(1,0,0,0,-2);
    CHECK_ULP_CLOSE(-sqrt(sqrt(Real(2))), roots[0], 3);
    CHECK_ULP_CLOSE(sqrt(sqrt(Real(2))), roots[1], 3);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);

    
    // x(x-1)(x-2)(x-3) = x^4 - 6x^3 + 11x^2 - 6x
    roots = quartic_roots(Real(1), Real(-6), Real(11), Real(-6), Real(0));
    CHECK_ULP_CLOSE(roots[0], Real(0), 2);
    CHECK_ULP_CLOSE(roots[1], Real(1), 2);
    CHECK_ULP_CLOSE(roots[2], Real(2), 2);
    CHECK_ULP_CLOSE(roots[3], Real(3), 2);

     // (x-1)(x-2)(x-3)(x-4) = x^4 - 10x^3 + 35x^2 - (2*3*4 + 1*3*4 + 1*2*4 + 1*2*3)x + 1*2*3*4  
    roots = quartic_roots<Real>(1, -10, 35, -24 - 12 - 8 - 6, 1*2*3*4);
    CHECK_ULP_CLOSE(Real(1), roots[0], 2);
    CHECK_ULP_CLOSE(Real(2), roots[1], 2);
    CHECK_ULP_CLOSE(Real(3), roots[2], 2);
    CHECK_ULP_CLOSE(Real(4), roots[3], 2);
    
    // Double root:
    // (x+1)^2(x-2)(x-3) = x^4 - 3x^3 -3x^2 + 7x + 6
    // Note: This test is unstable wrt to perturbations!
    roots = quartic_roots(Real(1), Real(-3), Real(-3), Real(7), Real(6));
    CHECK_ULP_CLOSE(Real(-1), roots[0], 2);
    CHECK_ULP_CLOSE(Real(-1), roots[1], 2);
    CHECK_ULP_CLOSE(Real(2), roots[2], 2);
    CHECK_ULP_CLOSE(Real(3), roots[3], 2);

     
    std::uniform_real_distribution<Real> dis(-2,2);
    std::mt19937 gen(12343);
    // Expected roots
    std::array<Real, 4> r;
    int trials = 10;
    for (int i = 0; i < trials; ++i) {
        // Mathematica:
        // Expand[(x - r0)*(x - r1)*(x - r2)*(x-r3)]
        // r0 r1 r2 r3 - (r0 r1 r2 + r0 r1 r3 + r0 r2 r3 + r1r2r3)x
        // + (r0 r1 + r0 r2 + r0 r3 + r1 r2 + r1r3 + r2 r3)x^2 - (r0 + r1 + r2 + r3) x^3 + x^4
        for (auto & root : r) {
            root = static_cast<Real>(dis(gen));
        }
        std::sort(r.begin(), r.end());
        a = 1;
        b = -(r[0] + r[1] + r[2] + r[3]);
        c = r[0]*r[1] + r[0]*r[2] + r[0]*r[3] + r[1]*r[2] + r[1]*r[3] + r[2]*r[3];
        d = -(r[0]*r[1]*r[2] + r[0]*r[1]*r[3] + r[0]*r[2]*r[3] + r[1]*r[2]*r[3]);
        e = r[0]*r[1]*r[2]*r[3];

        roots = quartic_roots(a, b, c, d, e);
        // I could check the condition number here, but this is fine right?
        CHECK_ULP_CLOSE(r[0], roots[0], 340);
        CHECK_ULP_CLOSE(r[1], roots[1], 440);
        CHECK_ULP_CLOSE(r[2], roots[2], 220);
        CHECK_ULP_CLOSE(r[3], roots[3], 160);
    }
}

void issue_825() {
    using std::sqrt;
    using std::cbrt;
    double a = 1;
    double b = 1;
    double c = 1;
    double d = 1;
    double e = -4;
    std::array<double, 4> roots = boost::math::tools::quartic_roots<double>(a, b, c, d, e);
    // The real roots are 1 and -1.6506
    // Wolfram alpha: Roots[x^4 + x^3 + x^2 + x == 4]
    double expected = (-2  - cbrt(25/(3*sqrt(6.0) - 7)) + cbrt(5*(3*sqrt(6.0) - 7)))/3;
    CHECK_ULP_CLOSE(expected, roots[0], 5);
    CHECK_ULP_CLOSE(1.0, roots[1], 5);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);
}

void issue_1055() {
    double a = 1.0;
    double b = -547.5045576653938;
    double c = 75042.069484941996;
    double d = 273.7522788326969;
    double e =  0.24965766552610175;
    std::array<double, 4> roots = boost::math::tools::quartic_roots<double>(a, b, c, d, e);
    // This is accurate to 1e-9 on every platform *except* cygwin/g++11/c++17:
    CHECK_ABSOLUTE_ERROR(-0.00182420203946279, roots[0], 1e-6);
    CHECK_ABSOLUTE_ERROR(-0.00182370927680797, roots[1], 1e-6);
    CHECK_NAN(roots[2]);
    CHECK_NAN(roots[3]);
}


int main()
{
    test_zero_coefficients<float>();
    test_zero_coefficients<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_zero_coefficients<long double>();
#endif
    issue_825();
    issue_1055();
    return boost::math::test::report_errors();
}