1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/*
* Copyright Nick Thompson, 2021
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <random>
#include <boost/math/tools/quartic_roots.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using boost::math::tools::quartic_roots;
using std::cbrt;
using std::sqrt;
template<class Real>
void test_zero_coefficients()
{
Real a = 0;
Real b = 0;
Real c = 0;
Real d = 0;
Real e = 0;
auto roots = quartic_roots(a,b,c,d,e);
CHECK_EQUAL(roots[0], Real(0));
CHECK_EQUAL(roots[1], Real(0));
CHECK_EQUAL(roots[2], Real(0));
CHECK_EQUAL(roots[3], Real(0));
b = 1;
e = 1;
// x^3 + 1 = 0:
roots = quartic_roots(a,b,c,d,e);
CHECK_EQUAL(roots[0], Real(-1));
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
e = -1;
// x^3 - 1 = 0:
roots = quartic_roots(a,b,c,d,e);
CHECK_EQUAL(roots[0], Real(1));
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
e = -2;
// x^3 - 2 = 0
roots = quartic_roots(a,b,c,d,e);
CHECK_ULP_CLOSE(roots[0], cbrt(Real(2)), 2);
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
// x^4 -1 = 0
// x = \pm 1:
roots = quartic_roots<Real>(1, 0, 0, 0, -1);
CHECK_ULP_CLOSE(Real(-1), roots[0], 3);
CHECK_ULP_CLOSE(Real(1), roots[1], 3);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
// x^4 - 2 = 0 \implies x = \pm sqrt(sqrt(2))
roots = quartic_roots<Real>(1,0,0,0,-2);
CHECK_ULP_CLOSE(-sqrt(sqrt(Real(2))), roots[0], 3);
CHECK_ULP_CLOSE(sqrt(sqrt(Real(2))), roots[1], 3);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
// x(x-1)(x-2)(x-3) = x^4 - 6x^3 + 11x^2 - 6x
roots = quartic_roots(Real(1), Real(-6), Real(11), Real(-6), Real(0));
CHECK_ULP_CLOSE(roots[0], Real(0), 2);
CHECK_ULP_CLOSE(roots[1], Real(1), 2);
CHECK_ULP_CLOSE(roots[2], Real(2), 2);
CHECK_ULP_CLOSE(roots[3], Real(3), 2);
// (x-1)(x-2)(x-3)(x-4) = x^4 - 10x^3 + 35x^2 - (2*3*4 + 1*3*4 + 1*2*4 + 1*2*3)x + 1*2*3*4
roots = quartic_roots<Real>(1, -10, 35, -24 - 12 - 8 - 6, 1*2*3*4);
CHECK_ULP_CLOSE(Real(1), roots[0], 2);
CHECK_ULP_CLOSE(Real(2), roots[1], 2);
CHECK_ULP_CLOSE(Real(3), roots[2], 2);
CHECK_ULP_CLOSE(Real(4), roots[3], 2);
// Double root:
// (x+1)^2(x-2)(x-3) = x^4 - 3x^3 -3x^2 + 7x + 6
// Note: This test is unstable wrt to perturbations!
roots = quartic_roots(Real(1), Real(-3), Real(-3), Real(7), Real(6));
CHECK_ULP_CLOSE(Real(-1), roots[0], 2);
CHECK_ULP_CLOSE(Real(-1), roots[1], 2);
CHECK_ULP_CLOSE(Real(2), roots[2], 2);
CHECK_ULP_CLOSE(Real(3), roots[3], 2);
std::uniform_real_distribution<Real> dis(-2,2);
std::mt19937 gen(12343);
// Expected roots
std::array<Real, 4> r;
int trials = 10;
for (int i = 0; i < trials; ++i) {
// Mathematica:
// Expand[(x - r0)*(x - r1)*(x - r2)*(x-r3)]
// r0 r1 r2 r3 - (r0 r1 r2 + r0 r1 r3 + r0 r2 r3 + r1r2r3)x
// + (r0 r1 + r0 r2 + r0 r3 + r1 r2 + r1r3 + r2 r3)x^2 - (r0 + r1 + r2 + r3) x^3 + x^4
for (auto & root : r) {
root = static_cast<Real>(dis(gen));
}
std::sort(r.begin(), r.end());
a = 1;
b = -(r[0] + r[1] + r[2] + r[3]);
c = r[0]*r[1] + r[0]*r[2] + r[0]*r[3] + r[1]*r[2] + r[1]*r[3] + r[2]*r[3];
d = -(r[0]*r[1]*r[2] + r[0]*r[1]*r[3] + r[0]*r[2]*r[3] + r[1]*r[2]*r[3]);
e = r[0]*r[1]*r[2]*r[3];
roots = quartic_roots(a, b, c, d, e);
// I could check the condition number here, but this is fine right?
CHECK_ULP_CLOSE(r[0], roots[0], 340);
CHECK_ULP_CLOSE(r[1], roots[1], 440);
CHECK_ULP_CLOSE(r[2], roots[2], 220);
CHECK_ULP_CLOSE(r[3], roots[3], 160);
}
}
void issue_825() {
using std::sqrt;
using std::cbrt;
double a = 1;
double b = 1;
double c = 1;
double d = 1;
double e = -4;
std::array<double, 4> roots = boost::math::tools::quartic_roots<double>(a, b, c, d, e);
// The real roots are 1 and -1.6506
// Wolfram alpha: Roots[x^4 + x^3 + x^2 + x == 4]
double expected = (-2 - cbrt(25/(3*sqrt(6.0) - 7)) + cbrt(5*(3*sqrt(6.0) - 7)))/3;
CHECK_ULP_CLOSE(expected, roots[0], 5);
CHECK_ULP_CLOSE(1.0, roots[1], 5);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
}
void issue_1055() {
double a = 1.0;
double b = -547.5045576653938;
double c = 75042.069484941996;
double d = 273.7522788326969;
double e = 0.24965766552610175;
std::array<double, 4> roots = boost::math::tools::quartic_roots<double>(a, b, c, d, e);
// This is accurate to 1e-9 on every platform *except* cygwin/g++11/c++17:
CHECK_ABSOLUTE_ERROR(-0.00182420203946279, roots[0], 1e-6);
CHECK_ABSOLUTE_ERROR(-0.00182370927680797, roots[1], 1e-6);
CHECK_NAN(roots[2]);
CHECK_NAN(roots[3]);
}
int main()
{
test_zero_coefficients<float>();
test_zero_coefficients<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_zero_coefficients<long double>();
#endif
issue_825();
issue_1055();
return boost::math::test::report_errors();
}
|