1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <vector>
#include <array>
#include <forward_list>
#include <algorithm>
#include <random>
#include <cmath>
#include <cfloat>
#include <boost/core/lightweight_test.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/statistics/univariate_statistics.hpp>
#include <boost/math/statistics/signal_statistics.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_complex.hpp>
using std::abs;
using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_complex_50;
using boost::math::constants::two_pi;
/*
* Test checklist:
* 1) Does it work with multiprecision?
* 2) Does it work with .cbegin()/.cend() if the data is not altered?
* 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
* 4) Does it work with std::forward_list if a forward iterator is all that is required?
* 5) Does it work with complex data if complex data is sensible?
* 6) Does it work with integer data if sensible?
*/
template<class Real>
void test_hoyer_sparsity()
{
using std::sqrt;
Real tol = 5*std::numeric_limits<Real>::epsilon();
std::vector<Real> v{1,0,0};
Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
BOOST_TEST(abs(hs - 1) < tol);
hs = boost::math::statistics::hoyer_sparsity(v);
BOOST_TEST(abs(hs - 1) < tol);
// Does it work with constant iterators?
hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
BOOST_TEST(abs(hs - 1) < tol);
v[0] = 1;
v[1] = 1;
v[2] = 1;
hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
BOOST_TEST(abs(hs) < tol);
std::array<Real, 3> w{1,1,1};
hs = boost::math::statistics::hoyer_sparsity(w);
BOOST_TEST(abs(hs) < tol);
// Now some statistics:
// If x_i ~ Unif(0,1), E[x_i] = 1/2, E[x_i^2] = 1/3.
// Therefore, E[||x||_1] = N/2, E[||x||_2] = sqrt(N/3),
// and hoyer_sparsity(x) is close to (1-sqrt(3)/2)/(1-1/sqrt(N))
std::mt19937 gen(82);
std::uniform_real_distribution<long double> dis(0, 1);
v.resize(5000);
for (size_t i = 0; i < v.size(); ++i) {
v[i] = dis(gen);
}
hs = boost::math::statistics::hoyer_sparsity(v);
Real expected = (1.0 - boost::math::constants::root_three<Real>()/2)/(1.0 - 1.0/sqrt(v.size()));
BOOST_TEST(abs(expected - hs) < 0.01);
// Does it work with a forward list?
std::forward_list<Real> u1{1, 1, 1};
hs = boost::math::statistics::hoyer_sparsity(u1);
BOOST_TEST(abs(hs) < tol);
// Does it work with a boost ublas vector?
boost::numeric::ublas::vector<Real> u2(3);
u2[0] = 1;
u2[1] = 1;
u2[2] = 1;
hs = boost::math::statistics::hoyer_sparsity(u2);
BOOST_TEST(abs(hs) < tol);
}
template<class Z>
void test_integer_hoyer_sparsity()
{
using std::sqrt;
double tol = 5*std::numeric_limits<double>::epsilon();
std::vector<Z> v{1,0,0};
double hs = boost::math::statistics::hoyer_sparsity(v);
BOOST_TEST(abs(hs - 1) < tol);
v[0] = 1;
v[1] = 1;
v[2] = 1;
hs = boost::math::statistics::hoyer_sparsity(v);
BOOST_TEST(abs(hs) < tol);
}
template<class Complex>
void test_complex_hoyer_sparsity()
{
typedef typename Complex::value_type Real;
using std::sqrt;
Real tol = 5*std::numeric_limits<Real>::epsilon();
std::vector<Complex> v{{0,1}, {0, 0}, {0,0}};
Real hs = boost::math::statistics::hoyer_sparsity(v.begin(), v.end());
BOOST_TEST(abs(hs - 1) < tol);
hs = boost::math::statistics::hoyer_sparsity(v);
BOOST_TEST(abs(hs - 1) < tol);
// Does it work with constant iterators?
hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
BOOST_TEST(abs(hs - 1) < tol);
// All are the same magnitude:
v[0] = {0, 1};
v[1] = {1, 0};
v[2] = {0,-1};
hs = boost::math::statistics::hoyer_sparsity(v.cbegin(), v.cend());
BOOST_TEST(abs(hs) < tol);
}
template<class Real>
void test_absolute_gini_coefficient()
{
using boost::math::statistics::absolute_gini_coefficient;
using boost::math::statistics::sample_absolute_gini_coefficient;
using std::abs;
Real tol = std::numeric_limits<Real>::epsilon();
std::vector<Real> v{-1,0,0};
Real gini = sample_absolute_gini_coefficient(v.begin(), v.end());
BOOST_TEST(abs(gini - 1) < tol);
gini = absolute_gini_coefficient(v);
BOOST_TEST(abs(gini - Real(2)/Real(3)) < tol);
v[0] = 1;
v[1] = -1;
v[2] = 1;
gini = absolute_gini_coefficient(v.begin(), v.end());
BOOST_TEST(abs(gini) < tol);
gini = sample_absolute_gini_coefficient(v.begin(), v.end());
BOOST_TEST(abs(gini) < tol);
std::vector<std::complex<Real>> w(128);
std::complex<Real> i{0,1};
for(size_t k = 0; k < w.size(); ++k)
{
w[k] = exp(i*static_cast<Real>(k)/static_cast<Real>(w.size()));
}
gini = absolute_gini_coefficient(w.begin(), w.end());
BOOST_TEST(abs(gini) < tol);
gini = sample_absolute_gini_coefficient(w.begin(), w.end());
BOOST_TEST(abs(gini) < tol);
// The population Gini index is invariant under "cloning": If w = v \oplus v, then G(w) = G(v).
// We use the sample Gini index, so we need to rescale
std::vector<Real> u(1000);
std::mt19937 gen(35);
std::uniform_real_distribution<long double> dis(0, 50);
for (size_t i = 0; i < u.size()/2; ++i)
{
u[i] = dis(gen);
}
for (size_t i = 0; i < u.size()/2; ++i)
{
u[i + u.size()/2] = u[i];
}
Real population_gini1 = absolute_gini_coefficient(u.begin(), u.begin() + u.size()/2);
Real population_gini2 = absolute_gini_coefficient(u.begin(), u.end());
BOOST_TEST(abs(population_gini1 - population_gini2) < 10*tol);
// The Gini coefficient of a uniform distribution is (b-a)/(3*(b+a)), see https://en.wikipedia.org/wiki/Gini_coefficient
Real expected = (dis.b() - dis.a() )/(3*(dis.a() + dis.b()));
BOOST_TEST(abs(expected - population_gini1) < 0.01);
std::exponential_distribution<long double> exp_dis(1);
for (size_t i = 0; i < u.size(); ++i)
{
u[i] = exp_dis(gen);
}
population_gini2 = absolute_gini_coefficient(u);
std::cout << population_gini2 << std::endl;
BOOST_TEST(abs(population_gini2 - 0.5) < 0.012);
}
template<class Real>
void test_oracle_snr()
{
using std::abs;
Real tol = 100*std::numeric_limits<Real>::epsilon();
size_t length = 100;
std::vector<Real> signal(length, 1);
std::vector<Real> noisy_signal = signal;
noisy_signal[0] += 1;
Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
BOOST_TEST(abs(snr - length) < tol);
BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
}
template<class Z>
void test_integer_oracle_snr()
{
double tol = std::numeric_limits<double>::epsilon();
size_t length = 100;
std::vector<Z> signal(length, 1);
std::vector<Z> noisy_signal = signal;
noisy_signal[0] += 1;
double snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
double snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
BOOST_TEST(abs(snr - length) < tol);
BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
}
template<class Complex>
void test_complex_oracle_snr()
{
using Real = typename Complex::value_type;
using std::abs;
using std::log10;
Real tol = 100*std::numeric_limits<Real>::epsilon();
size_t length = 100;
std::vector<Complex> signal(length, {1,0});
std::vector<Complex> noisy_signal = signal;
noisy_signal[0] += Complex(1,0);
Real snr = boost::math::statistics::oracle_snr(signal, noisy_signal);
Real snr_db = boost::math::statistics::oracle_snr_db(signal, noisy_signal);
BOOST_TEST(abs(snr - length) < tol);
BOOST_TEST(abs(snr_db - 10*log10(length)) < tol);
}
template<class Real>
void test_m2m4_snr_estimator()
{
Real tol = std::numeric_limits<Real>::epsilon();
std::vector<Real> signal(5000, 1);
std::vector<Real> x(signal.size());
std::mt19937 gen(18);
std::normal_distribution<Real> dis{0, 1.0};
for (size_t i = 0; i < x.size(); ++i)
{
signal[i] = 5*sin(100*6.28*i/x.size());
x[i] = signal[i] + dis(gen);
}
// Kurtosis of a sine wave is 1.5:
auto m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5);
auto oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
std::uniform_real_distribution<Real> uni_dis{-1,1};
for (size_t i = 0; i < x.size(); ++i)
{
x[i] = signal[i] + uni_dis(gen);
}
// Kurtosis of continuous uniform distribution over [-1,1] is 1.8:
m2m4_db = boost::math::statistics::m2m4_snr_estimator_db(x, 1.5, 1.8);
oracle_snr_db = boost::math::statistics::mean_invariant_oracle_snr_db(signal, x);
// The performance depends on the exact numbers generated by the distribution, but this isn't bad:
BOOST_TEST(abs(m2m4_db - oracle_snr_db) < 0.2);
// The SNR estimator should be scale invariant.
// If x has snr y, then kx should have snr y.
Real ka = 1.5;
Real kw = 1.8;
auto m2m4 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
for(size_t i = 0; i < x.size(); ++i)
{
x[i] *= 4096;
}
auto m2m4_2 = boost::math::statistics::m2m4_snr_estimator(x.begin(), x.end(), ka, kw);
BOOST_TEST(abs(m2m4 - m2m4_2) < tol);
}
int main()
{
test_absolute_gini_coefficient<float>();
test_absolute_gini_coefficient<double>();
test_absolute_gini_coefficient<long double>();
test_hoyer_sparsity<float>();
test_hoyer_sparsity<double>();
test_hoyer_sparsity<long double>();
test_hoyer_sparsity<cpp_bin_float_50>();
test_integer_hoyer_sparsity<int>();
test_integer_hoyer_sparsity<unsigned>();
test_complex_hoyer_sparsity<std::complex<float>>();
test_complex_hoyer_sparsity<std::complex<double>>();
test_complex_hoyer_sparsity<std::complex<long double>>();
test_complex_hoyer_sparsity<cpp_complex_50>();
test_oracle_snr<float>();
test_oracle_snr<double>();
test_oracle_snr<long double>();
test_oracle_snr<cpp_bin_float_50>();
test_integer_oracle_snr<int>();
test_integer_oracle_snr<unsigned>();
test_complex_oracle_snr<std::complex<float>>();
test_complex_oracle_snr<std::complex<double>>();
test_complex_oracle_snr<std::complex<long double>>();
test_complex_oracle_snr<cpp_complex_50>();
test_m2m4_snr_estimator<float>();
test_m2m4_snr_estimator<double>();
test_m2m4_snr_estimator<long double>();
return boost::report_errors();
}
|