File: sinh_sinh_quadrature_test.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (312 lines) | stat: -rw-r--r-- 10,606 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_TEST_MODULE sinh_sinh_quadrature_test
#include <complex>
#include <boost/multiprecision/cpp_complex.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/quadrature/sinh_sinh.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/math/tools/test_value.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/type_index.hpp>

#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900)
// MSVC-12 has problems if we include 2 different multiprecision types in the same program,
// basically random things stop compiling, even though they work fine in isolation :(
#include <boost/multiprecision/cpp_dec_float.hpp>
#endif

using std::expm1;
using std::exp;
using std::sin;
using std::cos;
using std::atan;
using std::tan;
using std::log;
using std::log1p;
using std::asinh;
using std::atanh;
using std::sqrt;
using std::isnormal;
using std::abs;
using std::sinh;
using std::tanh;
using std::cosh;
using std::pow;
using std::string;
using boost::multiprecision::cpp_bin_float_quad;
using boost::math::quadrature::sinh_sinh;
using boost::math::constants::pi;
using boost::math::constants::pi_sqr;
using boost::math::constants::half_pi;
using boost::math::constants::two_div_pi;
using boost::math::constants::half;
using boost::math::constants::third;
using boost::math::constants::half;
using boost::math::constants::third;
using boost::math::constants::catalan;
using boost::math::constants::ln_two;
using boost::math::constants::root_two;
using boost::math::constants::root_two_pi;
using boost::math::constants::root_pi;
//
// Code for generating the coefficients:
//
template <class T>
void print_levels(const T& v, const char* suffix)
{
   std::cout << "{\n";
   for (unsigned i = 0; i < v.size(); ++i)
   {
      std::cout << "      { ";
      for (unsigned j = 0; j < v[i].size(); ++j)
      {
         std::cout << v[i][j] << suffix << ", ";
      }
      std::cout << "},\n";
   }
   std::cout << "   };\n";
}

template <class T>
void print_levels(const std::pair<T, T>& p, const char* suffix = "")
{
   std::cout << "   static const std::vector<std::vector<Real> > abscissa = ";
   print_levels(p.first, suffix);
   std::cout << "   static const std::vector<std::vector<Real> > weights = ";
   print_levels(p.second, suffix);
}

template <class Real, class TargetType>
std::pair<std::vector<std::vector<Real>>, std::vector<std::vector<Real>> > generate_constants(unsigned max_rows)
{
   using boost::math::constants::half_pi;
   using boost::math::constants::two_div_pi;
   using boost::math::constants::pi;
   auto g = [](Real t) { return sinh(half_pi<Real>()*sinh(t)); };
   auto w = [](Real t) { return cosh(t)*half_pi<Real>()*cosh(half_pi<Real>()*sinh(t)); };

   std::vector<std::vector<Real>> abscissa, weights;

   std::vector<Real> temp;

   Real t_max = log(2 * two_div_pi<Real>()*log(2 * two_div_pi<Real>()*sqrt(boost::math::tools::max_value<TargetType>())));

   std::cout << "m_t_max = " << t_max << ";\n";

   Real h = 1;
   for (Real t = 1; t < t_max; t += h)
   {
      temp.push_back(g(t));
   }
   abscissa.push_back(temp);
   temp.clear();

   for (Real t = 1; t < t_max; t += h)
   {
      temp.push_back(w(t * h));
   }
   weights.push_back(temp);
   temp.clear();

   for (unsigned row = 1; row < max_rows; ++row)
   {
      h /= 2;
      for (Real t = h; t < t_max; t += 2 * h)
         temp.push_back(g(t));
      abscissa.push_back(temp);
      temp.clear();
   }
   h = 1;
   for (unsigned row = 1; row < max_rows; ++row)
   {
      h /= 2;
      for (Real t = h; t < t_max; t += 2 * h)
         temp.push_back(w(t));
      weights.push_back(temp);
      temp.clear();
   }

   return std::make_pair(abscissa, weights);
}

template<class Real>
void test_nr_examples()
{
    std::cout << "Testing type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    Real integration_limit = sqrt(boost::math::tools::epsilon<Real>());
    Real tol = 10 * boost::math::tools::epsilon<Real>();
    std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
    Real Q;
    Real Q_expected;
    Real L1;
    Real error;
    const sinh_sinh<Real> integrator(10);

    auto f0 = [](Real)->Real { return (Real) 0; };
    Q = integrator.integrate(f0, integration_limit, &error, &L1);
    Q_expected = 0;
    BOOST_CHECK_SMALL(Q, tol);
    BOOST_CHECK_SMALL(L1, tol);

    // In spite of the poles at \pm i, we still get a doubling of the correct digits at each level of refinement.
    auto f1 = [](const Real& t)->Real { return 1/(1+t*t); };
    Q = integrator.integrate(f1, integration_limit, &error, &L1);
    Q_expected = pi<Real>();
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
    BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
#if defined(BOOST_MSVC) && (BOOST_MSVC < 1900)
    auto f2 = [](const Real& x)->Real { return fabs(x) > boost::math::tools::log_max_value<Real>() ? 0 : exp(-x*x); };
#else
    auto f2 = [](const Real& x)->Real { return exp(-x*x); };
#endif
    Q = integrator.integrate(f2, integration_limit, &error, &L1);
    Q_expected = root_pi<Real>();
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
    BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);

    auto f5 = [](const Real& t)->Real { return 1/cosh(t);};
    Q = integrator.integrate(f5, integration_limit, &error, &L1);
    Q_expected = pi<Real>();
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
    BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);

    // This oscillatory integral has rapid convergence because the oscillations get swamped by the exponential growth of the denominator,
    // none the less the error is slightly higher than for the other cases:
    tol *= 10;
    auto f8 = [](const Real& t)->Real { return cos(t)/cosh(t);};
    Q = integrator.integrate(f8, integration_limit, &error, &L1);
    Q_expected = pi<Real>()/cosh(half_pi<Real>());
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
    // Try again with progressively fewer arguments:
    Q = integrator.integrate(f8, integration_limit);
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
    Q = integrator.integrate(f8);
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
}

// Test formulas for in the CRC Handbook of Mathematical functions, 32nd edition.
template<class Real>
void test_crc()
{
    std::cout << "Testing CRC formulas on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    Real integration_limit = sqrt(boost::math::tools::epsilon<Real>());
    Real tol = 10 * boost::math::tools::epsilon<Real>();
    std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
    Real Q;
    Real Q_expected;
    Real L1;
    Real error;
    const sinh_sinh<Real> integrator(10);

    // CRC Definite integral 698:
    auto f0 = [](Real x)->Real {
      using std::sinh;
      if(x == 0) {
        return (Real) 1;
      }
      return x/sinh(x);
    };
    Q = integrator.integrate(f0, integration_limit, &error, &L1);
    Q_expected = pi_sqr<Real>()/2;
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
    BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);


    // CRC Definite integral 695:
    auto f1 = [](Real x)->Real {
      using std::sin; using std::sinh;
      if(x == 0) {
        return (Real) 1;
      }
      return (Real) sin(x)/sinh(x);
    };
    Q = integrator.integrate(f1, integration_limit, &error, &L1);
    Q_expected = pi<Real>()*tanh(half_pi<Real>());
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
}

template<class Complex>
void test_dirichlet_eta()
{
  typedef typename Complex::value_type Real;
  std::cout << "Testing Dirichlet eta function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
  Real tol = 10 * boost::math::tools::epsilon<Real>();
  Complex Q;
  const sinh_sinh<Real> integrator(10);

  //https://en.wikipedia.org/wiki/Dirichlet_eta_function, integral representations:
  Complex z = {1,1};
  auto eta = [&z](Real t)->Complex {
    using std::exp;
    using std::pow;
    using boost::math::constants::pi;
    Complex i = {0,1};
    Complex num = pow((Real)1/ (Real)2  + i*t, -z);
    Real denom = exp(pi<Real>()*t) + exp(-pi<Real>()*t);
    Complex res = num/denom;
    return res;
  };
  Q = integrator.integrate(eta);
  // N[DirichletEta[1 + I], 150]
  {
    Complex Q_expected = { BOOST_MATH_TEST_VALUE(Real, 0.7265597750624632632014957285472413863111295027357257871), BOOST_MATH_TEST_VALUE(Real, 0.158095863901207324355426285544321998253687969756843115) };

    BOOST_CHECK_CLOSE_FRACTION(Q.real(), Q_expected.real(), tol);
    BOOST_CHECK_CLOSE_FRACTION(Q.imag(), Q_expected.imag(), tol);
  }
}


BOOST_AUTO_TEST_CASE(sinh_sinh_quadrature_test)
{
    //
    // Uncomment the following to print out the coefficients:
    //
    /*
    std::cout << std::scientific << std::setprecision(8);
    print_levels(generate_constants<cpp_bin_float_100, float>(8), "f");
    std::cout << std::setprecision(18);
    print_levels(generate_constants<cpp_bin_float_100, double>(8), "");
    std::cout << std::setprecision(35);
    print_levels(generate_constants<cpp_bin_float_100, cpp_bin_float_quad>(8), "L");
    */
    test_nr_examples<float>();
    test_nr_examples<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_nr_examples<long double>();
#endif
    test_nr_examples<cpp_bin_float_quad>();
#if !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
    test_nr_examples<boost::math::concepts::real_concept>();
#endif
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900) && defined(BOOST_MATH_RUN_MP_TESTS)
    test_nr_examples<boost::multiprecision::cpp_dec_float_50>();
#endif

    test_crc<float>();
    test_crc<double>();
    test_dirichlet_eta<std::complex<double>>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_crc<long double>();
    test_dirichlet_eta<std::complex<long double>>();
#endif
#ifdef BOOST_MATH_RUN_MP_TESTS
    test_crc<cpp_bin_float_quad>();
    test_dirichlet_eta<boost::multiprecision::cpp_complex_quad>();
#endif
#if !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
    test_crc<boost::math::concepts::real_concept>();
#endif
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900) && defined(BOOST_MATH_RUN_MP_TESTS)
    test_crc<boost::multiprecision::cpp_dec_float_50>();
#endif


}