File: test_1F1.hpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (500 lines) | stat: -rw-r--r-- 42,272 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error

#include <type_traits>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test_value.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/tools/big_constant.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#include "handle_test_result.hpp"
#include "table_type.hpp"

#include <boost/math/special_functions/hypergeometric_1F1.hpp>
#include <boost/math/quadrature/exp_sinh.hpp>

#ifdef _MSC_VER
#pragma warning(disable:4127)
#endif

template <class Real, class T>
void do_test_1F1(const T& data, const char* type_name, const char* test_name)
{
   typedef Real                   value_type;

   typedef value_type(*pg)(value_type, value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   pg funcp = boost::math::hypergeometric_0F1<value_type, value_type>;
#else
   pg funcp = boost::math::hypergeometric_1F1;
#endif

   boost::math::tools::test_result<value_type> result;

   std::cout << "Testing " << test_name << " with type " << type_name
      << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";

   //
   // test hypergeometric_2F0 against data:
   //
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(funcp, 0, 1, 2),
      extract_result<Real>(3));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "hypergeometric_1F1", test_name);
   std::cout << std::endl;
}

#ifndef SC_
#define SC_(x) BOOST_MATH_BIG_CONSTANT(T, 1000000, x)
#endif

template <class T>
void test_spots1(T, const char* type_name)
{
#include "hypergeometric_1F1.ipp"

   do_test_1F1<T>(hypergeometric_1F1, type_name, "Integer a values");

#include "hypergeometric_1F1_small_random.ipp"

   do_test_1F1<T>(hypergeometric_1F1_small_random, type_name, "Small random values");
}

template <class T>
void test_spots2(T, const char* type_name)
{
#include "hypergeometric_1F1_big.ipp"

   do_test_1F1<T>(hypergeometric_1F1_big, type_name, "Large random values");
}

template <class T>
void test_spots3(T, const char* type_name)
{
#include "hypergeometric_1F1_big_double_limited.ipp"

   do_test_1F1<T>(hypergeometric_1F1_big_double_limited, type_name, "Large random values - double limited precision");
}

template <class T>
void test_spots4(T, const char* type_name)
{
#include "hypergeometric_1F1_big_unsolved.ipp"

   do_test_1F1<T>(hypergeometric_1F1_big, type_name, "Large random values - unsolved domains");
}

template <class T>
void test_spots5(T, const char* type_name)
{
   std::cout << "Testing special cases for type " << type_name << std::endl;
   BOOST_MATH_STD_USING
      //
      // Special cases:
      //
      using boost::math::hypergeometric_1F1;
   T tol = boost::math::tools::epsilon<T>() * 200;
   if (std::numeric_limits<T>::digits > std::numeric_limits<double>::digits)
      tol *= 2;
   if (std::is_class<T>::value)
      tol *= 4;
   // b = 2a
   T computed = hypergeometric_1F1(T(-12.25), T(2 * -12.25), T(6.75));
   T expected = BOOST_MATH_TEST_VALUE(T, 22.995348157760091167706081204212893687052775606591209203948675272473773725021024450870565197330528784707135828761);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(12.25), T(2 * 12.25), T(6.75));
   expected = BOOST_MATH_TEST_VALUE(T, 36.47281964229300610642392880149257389834650024065756742702265701321933782423217084029882132197130099355867287657);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-11), T(-12), T(6.75));
   expected = BOOST_MATH_TEST_VALUE(T, 376.3166426246459656334542608880377435064935064935064935064935064935064935064935064935064935064935064935064935064);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-2), T(-12), T(6.75));
   expected = BOOST_MATH_TEST_VALUE(T, 2.470170454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-224), T(-1205), T(6.75));
   expected = BOOST_MATH_TEST_VALUE(T, 3.497033449657595724636676193024114597507981035316405619832857546161530808157860391434240068189887198094611519953);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(0.5), T(-1205.5), T(-6.75));
   expected = BOOST_MATH_TEST_VALUE(T, 1.00281149043026925155096279505879868076290060374397866773878698584557482321961231721407215665017657501846692575);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-0.5), T(-1205.5), T(-6.75));
   expected = BOOST_MATH_TEST_VALUE(T, 0.99719639844965644594352920596780535220516138060108955206195178371227403775248888108818326220977962797312690);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-12), T(16.25), T(1043.75));
   expected = BOOST_MATH_TEST_VALUE(T, 1.26527673505477678311707565502355407505496430400394171269315320194708537626079491650410923064978320042481912e20);
   BOOST_CHECK_CLOSE(computed, expected, tol * 3);

   computed = hypergeometric_1F1(T(3.5), T(3.5), T(36.25));
   expected = exp(T(36.25));
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-3.5), T(-3.5), T(36.25));
   expected = exp(T(36.25));
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(1), T(2), T(36.25));
   expected = boost::math::expm1(T(36.25)) / T(36.25);
   BOOST_CHECK_CLOSE(computed, expected, tol * 3);
   computed = hypergeometric_1F1(T(10.25), T(9.25), T(36.25));
   expected = exp(T(36.25)) * (T(9.25) + T(36.25)) / T(9.25);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-10.25), T(-11.25), T(36.25));
   expected = exp(T(36.25)) * (T(-11.25) + T(36.25)) / T(-11.25);
   BOOST_CHECK_CLOSE(computed, expected, tol);
   computed = hypergeometric_1F1(T(-10.25), T(-11.25), T(-36.25));
   expected = exp(T(-36.25)) * (T(-11.25) + T(-36.25)) / T(-11.25);
   BOOST_CHECK_CLOSE(computed, expected, tol);
}

template <class T>
void test_spots6(T, const char* type_name)
{
   static const std::array<std::array<T, 4>, 186> hypergeometric_1F1_bugs = { {
        { { static_cast<double>(17955.561660766602), static_cast<double>(9.6968994205831605e-09), static_cast<double>(-82.406154185533524), SC_(6.98056008378736714088730927132364938220428678e-11) }},
        { { static_cast<double>(17955.561660766602), static_cast<double>(-9.6968994205831605e-09), static_cast<double>(-82.406154185533524), SC_(-6.98055306629610746072607353939306734740549551e-11) }},
        { { static_cast<double>(-17955.561660766602), static_cast<double>(-9.6968994205831605e-09), static_cast<double>(82.406154185533524), SC_(-42897094853118832762870100.8669248353530950866) }} ,
        { { static_cast<double>(17955.561660766602), static_cast<double>(17956.061660766602), static_cast<double>(82.406154185533524), SC_(613117565438499794408370861624072730.553215432) }},
        { { static_cast<double>(2.9127331452327709e-07), static_cast<double>(-0.99999970872668542), static_cast<double>(0.15018942760070786), SC_(0.987526018990506843793601092932108059727149508) }},
        { { static_cast<double>(-2.9127331452327709e-07), static_cast<double>(-1.0000002912733146), static_cast<double>(0.15018942760070786), SC_(0.987526120661366412484942089372497015837368389) }},
        { { static_cast<double>(6.7191087900739423e-13), static_cast<double>(-0.99999999999932809), static_cast<double>(0.0011913633891253994), SC_(0.999999289758605006762757201699750974296453229) }},
        { { static_cast<double>(6.7191087900739423e-13), static_cast<double>(-0.99999999999932809), static_cast<double>(-0.0011913633891253994), SC_(0.999999290885918468326416221021126912154021802) }},
        { { static_cast<double>(-6.7191087900739423e-13), static_cast<double>(-1.0000000000006719), static_cast<double>(0.0011913633891253994), SC_(0.999999289758606609651292394510404091049823243) }},
        { { static_cast<double>(-6.7191087900739423e-13), static_cast<double>(-1.0000000000006719), static_cast<double>(-0.0011913633891253994), SC_(0.999999290885916869252591036674587894145399498) }},
        { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(0.979404874070484696999110600576068012417904384) }},
        { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(-6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(1.0205951259295150865252112924093487321207727) }},
        { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(1.02059512592951530745923325071510441026202975) }},
        { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(-6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(0.979404874070484909016444856299500644331897735) }},
        { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(1), static_cast<double>(-2539.60133934021), SC_(0.999999999999999891757095137551552220860540801) }},
        { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(1), static_cast<double>(-2539.60133934021), SC_(1.00000000000000010824290486244845922375479178) }},
        { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(0.5), static_cast<double>(-2539.60133934021), SC_(0.999999999999999873931788919689096760455570214) }},
        { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(0.5), static_cast<double>(-2539.60133934021), SC_(1.0000000000000001260682110803109183167444166) }},
        { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(-0.5), static_cast<double>(-2539.60133934021), SC_(0.999999999999999899656990458526368219886894767) }},
        { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(-0.5), static_cast<double>(-2539.60133934021), SC_(1.00000000000000010034300954147364037131355735) }},
        { { static_cast<double>(1.9561377367172441e-13), static_cast<double>(-0.99999999999980438), static_cast<double>(0.53720525559037924), SC_(0.791950585963666119273677451162365759080483409) }},
        { { static_cast<double>(1.9561377367172441e-13), static_cast<double>(-0.99999999999980438), static_cast<double>(-0.53720525559037924), SC_(0.898314630992769591673208399706587643905527327) }},
        { { static_cast<double>(-1.9561377367172441e-13), static_cast<double>(-1.0000000000001956), static_cast<double>(0.53720525559037924), SC_(0.791950585964025761367113514279915403442035074) }},
        { { static_cast<double>(-1.9561377367172441e-13), static_cast<double>(-1.0000000000001956), static_cast<double>(-0.53720525559037924), SC_(0.898314630992646771749564140770704893561753597) }},
        { { static_cast<double>(5.1851756946064858e-12), static_cast<double>(-0.99999999999481481), static_cast<double>(-774.06985878944397), SC_(1.91306610467163858324476828831735612399803649e-06) }},
        { { static_cast<double>(-5.1851756946064858e-12), static_cast<double>(-1.0000000000051852), static_cast<double>(-774.06985878944397), SC_(1.91306610479516297551035931150910859922270467e-06) }},

        {{ static_cast<double>(4.782769898853794e-15), static_cast<double>(1.0000000000000049), static_cast<double>(43.289540141820908), SC_(715.678254892476818206948251991084031658534788) }},
        { { static_cast<double>(-4.782769898853794e-15), static_cast<double>(0.99999999999999523), static_cast<double>(43.289540141820908), SC_(-713.67825489247727251051792450091274703212426) }},
        { { static_cast<double>(4.782769898853794e-15), static_cast<double>(0.50000000000000477), static_cast<double>(43.289540141820908), SC_(8235.578376364917373771471380274179857713986) }},
        { { static_cast<double>(-4.782769898853794e-15), static_cast<double>(0.49999999999999523), static_cast<double>(43.289540141820908), SC_(-8233.57837636502669085205930058992320862281194) }},
        { { static_cast<double>(4.782769898853794e-15), static_cast<double>(-0.49999999999999523), static_cast<double>(43.289540141820908), SC_(-696269.800378137841948029488304613132151506346) }},
        { { static_cast<double>(-4.782769898853794e-15), static_cast<double>(-0.50000000000000477), static_cast<double>(43.289540141820908), SC_(696271.8003781336298001417038674968935893361) }},
        { { static_cast<double>(8.1104991963343309e-05), static_cast<double>(-0.99991889500803666), static_cast<double>(-289.12455415725708), SC_(7.89625448009377635153307897651433007437615965e-124) }},
        { { static_cast<double>(-8.1104991963343309e-05), static_cast<double>(-1.0000811049919633), static_cast<double>(-289.12455415725708), SC_(7.8949781467741574268884621364833028722017032e-124) }},

         {{ static_cast<double>(-1.98018241448205767), static_cast<double>(1.98450573845762079), static_cast<double>(54.4977916804564302), SC_(2972026581564772.790187123046255523239732028) }},

         { { static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-0.50007823822942044), static_cast<double>(-1896.0561106204987), SC_(1.00058778866237037053151236215058095904086972) }},

         // Unexpected high error : 2.48268e+91 Found : -9.61305e+268 Expected : -1.74382e+193
         { { static_cast<double>(5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(-1.74381782591884817018404492963109914357365958e+193) }},
         // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -9.61305077326281580724540507004198316499661687e+268 Expected : 1.74381782591870724567837900957146707932623893e+193
         { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(1.74381782591870734495565763481520223752372107e+193) }},
         //Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was - 13497.312248525042
         { { static_cast<double>(-0.00023636552788275367), static_cast<double>(0.49976363447211725), static_cast<double>(-55.448519088327885), SC_(1.00141219419064760011631555641142295011268795) }},
         // Unexpected exception: Error in function boost::math::hypergeometric_pFq<long double>: Cancellation is so severe that no bits in the result are correct, last result was -13497.312248525042
         {{ static_cast<double>(-0.00023636552788275367), static_cast<double>(-0.50023636552788275), static_cast<double>(-55.448519088327885), SC_(1.00093463146763986302362749764017215184711625) }},
         // Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was - 1.3871133003351527e+47
         { { static_cast<double>(-1.6548533913638905e-10), static_cast<double>(0.49999999983451465), static_cast<double>(-169.20843148231506), SC_(1.00000000117356793527360151094991866549128017) }},
         // Unexpected exception: Error in function boost::math::hypergeometric_pFq<long double>: Cancellation is so severe that no bits in the result are correct, last result was -1.3871133003351527e+47
         {{ static_cast<double>(-1.6548533913638905e-10), static_cast<double>(-0.50000000016548529), static_cast<double>(-169.20843148231506), SC_(1.00000000084161045914716192484600809610013447) }},
         // Unexpected high error : 17825.7893791562892147339880466461181640625 Found : -0.000253525216373273569459012577453904668800532818 Expected : -0.000253525216374277052779756536082800266740377992
         { { static_cast<double>(-2.0211181797563725e-14), static_cast<double>(-1.0000000000000202), static_cast<double>(-25.653068032115698), SC_(-0.000253525216374277055047768086884693917115210113) }},
         // Unexpected high error: 1.79769e+308 Found: -inf Expected: -2.63233e-197
         {{ static_cast<double>(235.44106131792068), static_cast<double>(-2.250966744069919e-13), static_cast<double>(-974.28781914710999), SC_(-2.63233018990922939037251029961929844581862228e-197) }},
         // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -inf Expected : -3.53316570137147325345279499243339692001224196e+226
         { { static_cast<double>(-235.44106131792068), static_cast<double>(-2.250966744069919e-13), static_cast<double>(974.28781914710999), SC_(-3.53316570137147343919975579872097464691424847e+226) }},
         // Unexpected high error : 2.48268e+91 Found : -9.61305e+268 Expected : -1.74382e+193
         { { static_cast<double>(5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(-1.74381782591884817018404492963109914357365958e+193) }},
         // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -9.61305077326281580724540507004198316499661687e+268 Expected : 1.74381782591870724567837900957146707932623893e+193
         { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(1.74381782591870734495565763481520223752372107e+193) }},
         // Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was 3.0871891698197084e+73
         { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(0.499999999999994), static_cast<double>(-240.42092034220695), SC_(1.00000000000004464930530925572237133417488137) }},
         // Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was 3.0871891698197084e+73
         { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-0.500000000000006), static_cast<double>(-240.42092034220695), SC_(1.00000000000003262784934420226963147689063665) }},
         // Unexpected high error : 18466.4373304979599197395145893096923828125 Found : 1.32865406167486480872551302123696359558380209e-08 Expected : 1.3286540616694168317751162703647255236560909e-08
         { { static_cast<double>(6.772927684190258e-10), static_cast<double>(-0.99999999932270722), static_cast<double>(-483.69576895236969), SC_(1.32865406166941679958876322759721528297325713e-08) }},
         // Unexpected high error: 1.79769e+308 Found: -nan(ind) Expected: 5.31173e-38
         {{ static_cast<double>(6763.4877452850342), static_cast<double>(3.6834977949762315e-08), static_cast<double>(-210.20976513624191), SC_(5.31173132667573457976877380237496445775181141e-38) }},
         // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -nan(ind) Expected : 1.04274264437409856500364465136386556989276338e+54
         { { static_cast<double>(-6763.4877452850342), static_cast<double>(3.6834977949762315e-08), static_cast<double>(210.20976513624191), SC_(1.04274264437409861991447530452939035771734596e+54) }},
         // Unexpected high error: 3.17219226436543247206316287281668161679098192e+185 Found: 1.00012411189051491970538746574092795078602734e+201 Expected: 14198882672502154063215954231296
         {{ static_cast<double>(76763.042617797852), static_cast<double>(-21.722407214343548), static_cast<double>(-0.60326536209322512), SC_(14198882672502153010712531896984.8126667697959) }},

         // Unexpected high error: 1.79769313486231570814527423731704356798070568e+308 Found: -2.39521645877904927856730119998375850409649219e+124 Expected: 2.3952164587795095929135248712964248422934629e+124
         {{ static_cast<double>(-1.8857404964801872e-09), static_cast<double>(-226.52341184020042), static_cast<double>(160.86221924424171), SC_(2.39521645877950946848639784331327651190093595e+124) }},
         // Unexpected high error : 73027.246763920571538619697093963623046875 Found : 0.000111810625893715248580992382976262433658121154 Expected : 0.000111810625895528292111404111697225971511215903
         { { static_cast<double>(-7.5220323642510769e-13), static_cast<double>(-1.0000000000007523), static_cast<double>(-17.948102783411741), SC_(0.00011181062589552829441403260197223627311023229) }},
         // Unexpected high error: 111726.15160028330865316092967987060546875 Found: 0.00856985181006919560786627698689699172973632813 Expected: 0.00856985180985659310282098743982714950107038021
         {{ static_cast<double>(5.6136137469239618e-15), static_cast<double>(-0.99999999999999434), static_cast<double>(-1989.8742001056671), SC_(0.00856985180985659334965068576732515544478559175) }},
         // Unexpected high error : 10431.000000023717802832834422588348388671875 Found : 0.99999999999772626324556767940521240234375 Expected : 1.00000000000004241051954068097984418272972107
         { { static_cast<double>(-5.6136137469239618e-15), static_cast<double>(-0.50000000000000566), static_cast<double>(-1989.8742001056671), SC_(1.00000000000004243096226509338784935080089269) }},
         // And more from error rate testing:
         {{ (T)std::ldexp((double)-17079780487168000, -44), (T)std::ldexp((double)9462273998848000, -46), (T)std::ldexp((double)9928190459904000, -48), SC_(7.7358754011357422722746277257633664799903803239195e-72) }},
         {{ (T)std::ldexp((double)-16238757384192000, -44), (T)std::ldexp((double)17248812490752000, -44), (T)std::ldexp((double)12549255331840000, -49), SC_(4.7354970214088286546733909450191631190700414608975e-10) }},
         {{ static_cast<double>(-6.8543290253728628), static_cast<double>(607.72073245607316), static_cast<double>(253.26409819535911), SC_(0.024418741483258497441042709681531519387974841769189) }},
         {{ (T)std::ldexp((double)-15569844699136000, -52), (T)std::ldexp((double)12855440629760000, -44), (T)std::ldexp((double)12563412279296000, -45), SC_(0.097879401070280078654536987721507669872679020399179) }},
         {{ (T)std::ldexp((double)-13521484578816000, -48), (T)std::ldexp((double)11813014388736000, -46), (T)std::ldexp((double)12736881098752000, -48), SC_(9.1262751214688536871555425535678062558805718157237e-08) }},
         {{ (T)std::ldexp((double)-13125670141952000, -44), (T)std::ldexp((double)16524914262016000, -44), (T)std::ldexp((double)12270166867968000, -49), SC_(2.0809215788388623809065210261671764534436583442155e-08) }},
         {{ (T)std::ldexp((double)-9012443406336000, -45), (T)std::ldexp((double)12293411340288000, -46), (T)std::ldexp((double)15162862993408000, -52), SC_(0.00634911418172408957356631082162378669273898042) }},
         {{ (T)std::ldexp((double)10907252916224000, -46), (T)std::ldexp((double)10872033234944000, -44), (T)std::ldexp((double)14845267734528000, -44), SC_(3.35597139167246486559762237420776458756928282e+152) }},
         {{ (T)std::ldexp((double)10206210322432000, -44), (T)std::ldexp((double)-16798514331648000, -45), (T)std::ldexp((double)21261284909056000, -48), SC_(3.8172723666678171743099642722909945977624468e+207) }},
         //{{ (T)std::ldexp((double)9125305942016000, -46), (T)std::ldexp((double)-15115828240384000, -45), (T)std::ldexp((double)9662868946944000, -47), SC_(4175579218962.24466854749118518544065513059142) }},
         //
         // These next few are the result of probing the boundary cases in hypergeometric_1F1_negative_b_recurrence_region
         //
         {{ (T)std::ldexp((double)10860755407856640, -40), (T)std::ldexp((double)-15992550230222440, -47), (T)std::ldexp((double)11953621172224000, -51), SC_(1.77767974631716859575450750736407296713916302e+278) }},
         {{ (T)std::ldexp((double)10788477424245760, -40), (T)std::ldexp((double)-17098099940288104, -45), (T)std::ldexp((double)9309879533568000, -50), SC_(3.30879597828065234949261835734767876076477669e+268) }},
         {{ (T)std::ldexp((double)10938221827471360, -40), (T)std::ldexp((double)-13207828614139084, -46), (T)std::ldexp((double)14276471291904000, -57), SC_(0.00563892736925233243283328398477659041011689599) }},
         { { (T)std::ldexp((double)10886339790484480, -40), (T)std::ldexp((double)-15267677514969908, -46), (T)std::ldexp((double)11568125313024000, -56), SC_(0.000743168361387021436166355590813648069510383979) } },
         { { (T)std::ldexp((double)10486036094119936, -40), (T)std::ldexp((double)-15535492710109184, -41), (T)std::ldexp((double)17014293405696000, -45), SC_(-2.61817515260939017621443182916266462279292638e+230) } },
         { { (T)std::ldexp((double)10485257266971648, -40), (T)std::ldexp((double)-17826711054409018, -35), (T)std::ldexp((double)17138334978048000, -44), SC_(1.70138735099219741672706572460585684251928784e-08) } },
         { { (T)std::ldexp((double)10485122560373760, -40), (T)std::ldexp((double)-11098279821997376, -39), (T)std::ldexp((double)16925852270592000, -45), SC_(9.77378642649349178995585980824930703376759021e-98) } },
         { { (T)std::ldexp((double)10485292967829248, -40), (T)std::ldexp((double)-14859721380002656, -35), (T)std::ldexp((double)13729956970496000, -44), SC_(3.41094899910311302761937103011397882987669395e-08) } },
         { { (T)std::ldexp((double)10485037389193216, -40), (T)std::ldexp((double)-10840488483391544, -35), (T)std::ldexp((double)17577061875712000, -45), SC_(2.8030884395368690164859926372380406504460219e-07) } },
           //
           // Negative a and b worst cases:
        { { (T)std::ldexp((double)-9281686323200000, -44), (T)std::ldexp((double)-14062138056704000, -44), (T)std::ldexp((double)13563284652032000, -44), SC_(2.8338102961174890442403751063892055396228341374378e+265) } },
        { { (T)std::ldexp((double)-17049048150016000, -44), (T)std::ldexp((double)-16971363917824000, -45), (T)std::ldexp((double)11759598960640000, -49), SC_(4636596575297708282.1539119952275597833292408543916) }},
        { { (T)std::ldexp((double)-14233964060672000, -45), (T)std::ldexp((double)-12648356216832000, -47), (T)std::ldexp((double)9597206757376000, -46), SC_(-1.2995296554447445191533190670521132012426135496934e+104) }},
        { { (T)std::ldexp((double)-16705334214656000, -45), (T)std::ldexp((double)-15447756718080000, -46), (T)std::ldexp((double)16395884134400000, -47), SC_(5.4068014134661635929301319845768046995946557071618e+113) }},
        { { (T)std::ldexp((double)-13991530405888000, -45), (T)std::ldexp((double)-10196587347968000, -46), (T)std::ldexp((double)13331347734528000, -46), SC_(1.2861275297661534781908508971693782447411136476694e+138) }},
        { { (T)std::ldexp((double)-15134950760448000, -45), (T)std::ldexp((double)-14587193786368000, -48), (T)std::ldexp((double)17022855921664000, -46), SC_(-8.8168904087758007346518546320759101059296394741359e+115) }},
        { { (T)std::ldexp((double)-14854672039936000, -45), (T)std::ldexp((double)-10436558200832000, -45), (T)std::ldexp((double)11370918969344000, -47), SC_(8.8553524727253411744552846056891456360191660433059e+54) } },
        { { (T)std::ldexp((double)-16711069286400000, -46), (T)std::ldexp((double)-14809815056384000, -46), (T)std::ldexp((double)10469312954368000, -47), SC_(50343352353398198766339890377687038177.388095267191) } },
        { { (T)std::ldexp((double)-15026786402304000, -45), (T)std::ldexp((double)-16687356968960000, -46), (T)std::ldexp((double)14895621603328000, -47), SC_(2.8532956042460265690059969666558072704044483623242e+95) } },
        { { (T)std::ldexp((double)-15519073435648000, -45), (T)std::ldexp((double)-14162009718784000, -45), (T)std::ldexp((double)9997818855424000, -48), SC_(95767987018108517.763999577428194082282035178055037) } },
        { { (T)std::ldexp((double)-15317481275392000, -46), (T)std::ldexp((double)-16531865931776000, -44), (T)std::ldexp((double)17586268880896000, -45), SC_(1.4701248047083724279783071194324315286789986738882e+104) }},
        { { (T)std::ldexp((double)-11335669673984000, -44), (T)std::ldexp((double)-13146047094784000, -44), (T)std::ldexp((double)13671437864960000, -44), SC_(-2.1887607284987089539904337941443591993019781369247e+288) }},
        { { (T)std::ldexp((double)-16877985234944000, -46), (T)std::ldexp((double)-14384006086656000, -46), (T)std::ldexp((double)9074349342720000, -47), SC_(15376193613462463541358751744530105.412429016705833) }},
        { { (T)std::ldexp((double)-9751199809536000, -45), (T)std::ldexp((double)-17654191685632000, -47), (T)std::ldexp((double)10587451850752000, -47), SC_(-1.9601415510439595625538337964298353914980331018955e+68) }},
        { { (T)std::ldexp((double)-15233620754432000, -45), (T)std::ldexp((double)-12708283072512000, -46), (T)std::ldexp((double)10255461007360000, -46), SC_(-5.4344106361679075861859567858016187271235441673635e+125) }},
        { { (T)std::ldexp((double)-11241354149888000, -45), (T)std::ldexp((double)-9580579905536000, -45), (T)std::ldexp((double)12224976846848000, -47), SC_(12046856548470067405870726490464935201150430438.035) }},
        //
        // Bugs found while testing color maps:
        //
        { { SC_(0.078125000000000000), SC_(-0.039062500000000000), SC_(0.5), SC_(-0.3371910410915676603577770246237158427221) }},
        { { SC_(-19.492187500000000), SC_(0.50781250000000000), SC_(0.5), SC_(1.2551298228307647570646714060395253358015) }},
        //
        // Special cases for a,b equal and negative integers, see:
        //
         { {-1, -1, 0.9999999999990905052982270717620850, SC_(1.9999999999990905052982270717620850)} }, 
         { { -2, -2, 0.9999999999990905052982270717620850, SC_(2.4999999999981810105964545571144762) } }, 
         { { -3, -3, 0.9999999999990905052982270717620850, SC_(2.6666666666643929299122351732524916) } }, 
      { { -4, -4, 0.9999999999990905052982270717620850, SC_(2.7083333333309080141286065586746589) } }, 
      { { -5, -5, 0.9999999999990905052982270717620850, SC_(2.7166666666642034518493660889297968) } }, 
      { { -6, -6, 0.9999999999990905052982270717620850, SC_(2.7180555555530847616157402206496325) } }, 
      { { -7, -7, 0.9999999999990905052982270717620850, SC_(2.7182539682514961968413528410609673) } }, 
      { { -8, -8, 0.9999999999990905052982270717620850, SC_(2.7182787698387976036876421724036051) } }, 
      { { -9, -9, 0.9999999999990905052982270717620850, SC_(2.7182815255707199797197951818652022) } }, 
      { { -10, -10, 0.9999999999990905052982270717620850, SC_(2.7182818011439122170723781245206092) } }, 
      { { -11, -11, 0.9999999999990905052982270717620850, SC_(2.7182818261960206022634645412810530) } }, 
      { { -12, -12, 0.9999999999990905052982270717620850, SC_(2.7182818282836963010274896793573756) } }, 
      { { -13, -13, 0.9999999999990905052982270717620850, SC_(2.7182818284442867393938070953642430) } }, 
      { { -14, -14, 0.9999999999990905052982270717620850, SC_(2.7182818284557574849913907639252443) } }, 
      { { -15, -15, 0.9999999999990905052982270717620850, SC_(2.7182818284565222013645623129904880) } }, 
      { { -16, -16, 0.9999999999990905052982270717620850, SC_(2.7182818284565699961378854913379726) } }, 
      { { -17, -17, 0.9999999999990905052982270717620850, SC_(2.7182818284565728075951397933896427)} }, 
      { { -18, -18, 0.9999999999990905052982270717620850, SC_(2.7182818284565729637872094766949018) } }, 
      { { -19, -19, 0.9999999999990905052982270717620850, SC_(2.7182818284565729720078447231771757) } }, 
      { { -20, -20, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724188764855009155) } }, 
      { { -21, -21, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724384494265639330) } }, 
      { { -22, -22, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393391057031602) } }, 
      { { -23, -23, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393777874048657) } }, 
      { { -24, -24, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393793991424368) } }, 
      { { -25, -25, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794636119396) } }, 
      { { -26, -26, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794660915359) } }, 
      { { -27, -27, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661833728) } }, 
      { { -28, -28, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661866527) } }, 
      { { -29, -29, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661867658) } }, 
      { { -30, -30, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661867696) } },

      { {-1, -1, 23.5, 24.500000000000000000000000000000000} }, 
      { { -2, -2, 23.5, SC_(300.62500000000000000000000000000000) } }, 
      { { -3, -3, 23.5, SC_(2463.6041666666666666666666666666667) } }, 
      { { -4, -4, 23.5, SC_(15171.106770833333333333333333333333) } }, 
      { { -5, -5, 23.5, SC_(74896.369010416666666666666666666667) } }, 
      { { -6, -6, 23.5, SC_(308820.31278211805555555555555555556) } }, 
      { { -7, -7, 23.5, SC_(1.0941364097299727182539682539682540e6) } }, 
      { { -8, -8, 23.5, SC_(3.4010024445142957899305555555555556e6) } }, 
      { { -9, -9, 23.5, SC_(9.4244859797844726993083112874779541e6) } }, 
      { { -10, -10, 23.5, SC_(2.3579672287669388436346037257495591e7) } }, 
      { { -11, -11, 23.5, SC_(5.3820297581787162965472088193442360e7) } }, 
      { { -12, -12, 23.5, SC_(1.1304152211610113808501060460967145e8) } }, 
      { { -13, -13, 23.5, SC_(2.2009527415889947772417638428516250e8) } }, 
      { { -14, -14, 23.5, SC_(3.9979264365931097640420465731187961e8) } }, 
      { { -15, -15, 23.5, SC_(6.8131852254328899100291561838706976e8) } }, 
      { { -16, -16, 23.5, SC_(1.0948096571541316999447723424662553e9) } }, 
      { { -17, -17, 23.5, SC_(1.6664003432338260328938095786933647e9) } }, 
      { { -18, -18, 23.5, SC_(2.4126437389489825231328304148787575e9) } }, 
      { { -19, -19, 23.5, SC_(3.3356289915440444979021456596343750e9) } }, 
      { { -20, -20, 23.5, SC_(4.4201366633432423182560910722222255e9) } }, 
      { { -21, -21, 23.5, SC_(5.6337523913090113076997918910705344e9) } }, 
      { { -22, -22, 23.5, SC_(6.9301146461815372736964723112039553e9) } }, 
      { { -23, -23, 23.5, SC_(8.2546586892034659780843849143837548e9) } }, 
      { { -24, -24, 23.5, SC_(9.5516080646624378344642160049973086e9) } }, 
      { { -25, -25, 23.5, SC_(1.0770740477593871379461257230174049e10) } }, 
      { { -26, -26, 23.5, SC_(1.1872648620051128622054736799083795e10) } }, 
      { { -27, -27, 23.5, SC_(1.2831716818115778444312024572023760e10) } }, 
      { { -28, -28, 23.5, SC_(1.3636649055777180973706533952884087e10) } }, 
      { { -29, -29, 23.5, SC_(1.4288921731123489919940015692546766e10) } }, 
      { { -30, -30, 23.5, SC_(1.4799868660144765261156243055282531e10) } },
      //
      // Special cases for 1F1[-n, n, n], recurrence relations explode for these
      // so we need to take special care, see:
      //
      { {-1, 1, 1, 0} }, 
      { { -2, 2, 2, SC_(-0.33333333333333333333333333333333333) } }, 
      { { -3, 3, 3, SC_(-0.20000000000000000000000000000000000) } }, 
      { { -4, 4, 4, SC_(-0.028571428571428571428571428571428571) } }, 
      { { -5, 5, 5, SC_(0.034391534391534391534391534391534392) } }, 
      { { -6, 6, 6, SC_(0.025974025974025974025974025974025974) } }, 
      { { -7, 7, 7, SC_(0.0055458430458430458430458430458430458) } }, 
      { { -8, 8, 8, SC_(-0.0034844168177501510834844168177501511) } }, 
      { { -9, 9, 9, SC_(-0.0032789269553975436328377504848093083) } }, 
      { { -10, 10, 10, SC_(-0.00090655818209997776561244053504115424) } }, 
      { { -11, 11, 11, SC_(0.00032882634672802494317065057641990169) } }, 
      { { -12, 12, 12, SC_(0.00040482026290537337976908770901425171) } }, 
      { { -13, 13, 13, SC_(0.00013693942490239899363731963133279724) } }, 
      { { -14, 14, 14, SC_(-0.000027114521961598289657552462032956946) } }, 
      { { -15, 15, 15, SC_(-0.000048914265972106416241933622562193726) } }, 
      { { -16, 16, 16, SC_(-0.000019682683030825726780784406799223748) } }, 
      { { -17, 17, 17, SC_(1.5839922420851958320021705281180291e-6) } }, 
      { { -18, 18, 18, SC_(5.7780970016822066007807309411610877e-6) } }, 
      { { -19, 19, 19, SC_(2.7286504926687308865490707120168935e-6) } }, 
      { { -20, 20, 20, SC_(3.0777012229800824850242341264747930e-8) } }, 
      { { -21, 21, 21, SC_(-6.6559501148858176979489331026765573e-7) } }, 
      { { -22, 22, 22, SC_(-3.6755193543651782101726439542497979e-7) } }, 
      { { -23, 23, 23, SC_(-3.2293485126433594872416984294551283e-8) } }, 
      { { -24, 24, 24, SC_(7.4437711540037326179190703001784924e-8) } }, 
      { { -25, 25, 25, SC_(4.8312843928329924033336815590280938e-8) } }, 
      { { -26, 26, 26, SC_(7.5047977770302588786691782818325643e-9) } }, 
      { { -27, 27, 27, SC_(-8.0223979804469656047588860706683494e-9) } }, 
      { { -28, 28, 28, SC_(-6.2125286411657869483728921158018766e-9) } }, 
      { { -29, 29, 29, SC_(-1.3521578972057573423569167878458172e-9) } }, 
      {{ -30, 30, 30, SC_(8.2238878884841599031462003461115991e-10) } },

      // https://github.com/boostorg/math/issues/1034
      {{ 13, 1.5f, 61, SC_(1.35508577094765660270265300640877455638098585524020525369044e39)}},
      {{ 13, 1.5f - T(1)/128, 61, SC_(1.40067238333701986992154961431485209677766220602448290643906e39)}},
      {{ 13, 1.5f + T(1)/128, 61, SC_(1.31105748771677778012064837998217769289913724450105998963999e39)}},
   } };
   static const std::array<std::array<T, 4>, 2> hypergeometric_1F1_big_bugs = { {
#if DBL_MAX_EXP == LDBL_MAX_EXP
         {{ static_cast<double>(7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), BOOST_MATH_HUGE_CONSTANT(T, 1000, 4.33129800901478785957996719992774682013355926e+668) }},
         {{ static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), BOOST_MATH_HUGE_CONSTANT(T, 1000, -4.3248750673398590673783317624407455467680038e+668) }},
#else
   { { static_cast<double>(7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), SC_(4.33129800901478785957996719992774682013355926e+668) } },
   { { static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), SC_(-4.3248750673398590673783317624407455467680038e+668) } },
#endif
   } };
   do_test_1F1<T>(hypergeometric_1F1_bugs, type_name, "Bug cases");
   if(std::numeric_limits<T>::max_exponent10 > 800)
      do_test_1F1<T>(hypergeometric_1F1_big_bugs, type_name, "Bug cases - oversized");
   else
   {
      for (unsigned i = 0; i < hypergeometric_1F1_big_bugs.size(); ++i)
      {
         T val = boost::math::hypergeometric_1F1(hypergeometric_1F1_big_bugs[i][0], hypergeometric_1F1_big_bugs[i][1], hypergeometric_1F1_big_bugs[i][2]);
         BOOST_CHECK((boost::math::isinf)(val));
      }
   }
}

template <class T>
void test_spots7(T, const char* type_name)
{
#include "hypergeometric_1f1_neg_int.ipp"

   do_test_1F1<T>(hypergeometric_1f1_neg_int, type_name, "Both parameters negative integers.");
}

template <class T>
void test_spots(T z, const char* type_name)
{
   test_spots1(z, type_name);
   test_spots2(z, type_name);
   //
   // Test ranges that are limited to double precision, these contain test cases
   // which require full double precision for the inputs, so we don't test
   // at float precision as well as higher precisions:
   //
   if (std::numeric_limits<T>::digits10 == std::numeric_limits<double>::digits10)
      test_spots3(z, type_name);
#ifdef TEST_UNSOLVED
   test_spots4(z, type_name);
#endif
   test_spots5(z, type_name);
   //
   // Try as we might, we can't get better than quad precision on some of these:
   //
   if(std::numeric_limits<T>::digits >= std::numeric_limits<double>::digits && std::numeric_limits<T>::digits <= 128)
      test_spots6(z, type_name);
   test_spots7(z, type_name);
}


// Tests the Mellin transform formula given here: https://dlmf.nist.gov/13.10, Equation 13.10.10
template <class Real>
void test_hypergeometric_mellin_transform()
{
   using boost::math::hypergeometric_1F1;
   using boost::math::quadrature::exp_sinh;
   using boost::math::tgamma;
   using std::pow;

   // Constraint: 0 < lambda < a.
   Real lambda = 0.5;
   Real a = 1;
   Real b = 3;
   auto f = [&](Real t)->Real { return pow(t, lambda - 1)*hypergeometric_1F1(a, b, -t); };

   auto integrator = exp_sinh<double>();
   Real computed = integrator.integrate(f, boost::math::tools::epsilon<Real>());
   Real expected = tgamma(b)*tgamma(lambda)*tgamma(a - lambda) / (tgamma(a)*tgamma(b - lambda));

   Real tol = boost::math::tools::epsilon<Real>() * 5;
   BOOST_CHECK_CLOSE_FRACTION(computed, expected, tol);
}


// Tests the Laplace transform formula given here: https://dlmf.nist.gov/13.10, Equation 13.10.4
template <class Real>
void test_hypergeometric_laplace_transform()
{
   using boost::math::hypergeometric_1F1;
   using boost::math::quadrature::exp_sinh;
   using boost::math::tgamma;
   using std::pow;
   using std::exp;

   // Set a = 1 blows up for some reason . . .
   Real a = -1;
   Real b = 3;
   Real z = 1.5;
   auto f = [&](Real t)->Real { return exp(-z * t)*pow(t, b - 1)*hypergeometric_1F1(a, b, t); };

   auto integrator = exp_sinh<double>();
   Real computed = integrator.integrate(f, boost::math::tools::epsilon<Real>());
   Real expected = tgamma(b) / (pow(z, b)*pow(1 - 1 / z, a));

   Real tol = boost::math::tools::epsilon<Real>() * 200;
   BOOST_CHECK_CLOSE(computed, expected, tol);
}