1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <type_traits>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test_value.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/tools/big_constant.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#include <boost/math/special_functions/hypergeometric_1F1.hpp>
#include <boost/math/quadrature/exp_sinh.hpp>
#ifdef _MSC_VER
#pragma warning(disable:4127)
#endif
template <class Real, class T>
void do_test_1F1(const T& data, const char* type_name, const char* test_name)
{
typedef Real value_type;
typedef value_type(*pg)(value_type, value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::hypergeometric_0F1<value_type, value_type>;
#else
pg funcp = boost::math::hypergeometric_1F1;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test hypergeometric_2F0 against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "hypergeometric_1F1", test_name);
std::cout << std::endl;
}
#ifndef SC_
#define SC_(x) BOOST_MATH_BIG_CONSTANT(T, 1000000, x)
#endif
template <class T>
void test_spots1(T, const char* type_name)
{
#include "hypergeometric_1F1.ipp"
do_test_1F1<T>(hypergeometric_1F1, type_name, "Integer a values");
#include "hypergeometric_1F1_small_random.ipp"
do_test_1F1<T>(hypergeometric_1F1_small_random, type_name, "Small random values");
}
template <class T>
void test_spots2(T, const char* type_name)
{
#include "hypergeometric_1F1_big.ipp"
do_test_1F1<T>(hypergeometric_1F1_big, type_name, "Large random values");
}
template <class T>
void test_spots3(T, const char* type_name)
{
#include "hypergeometric_1F1_big_double_limited.ipp"
do_test_1F1<T>(hypergeometric_1F1_big_double_limited, type_name, "Large random values - double limited precision");
}
template <class T>
void test_spots4(T, const char* type_name)
{
#include "hypergeometric_1F1_big_unsolved.ipp"
do_test_1F1<T>(hypergeometric_1F1_big, type_name, "Large random values - unsolved domains");
}
template <class T>
void test_spots5(T, const char* type_name)
{
std::cout << "Testing special cases for type " << type_name << std::endl;
BOOST_MATH_STD_USING
//
// Special cases:
//
using boost::math::hypergeometric_1F1;
T tol = boost::math::tools::epsilon<T>() * 200;
if (std::numeric_limits<T>::digits > std::numeric_limits<double>::digits)
tol *= 2;
if (std::is_class<T>::value)
tol *= 4;
// b = 2a
T computed = hypergeometric_1F1(T(-12.25), T(2 * -12.25), T(6.75));
T expected = BOOST_MATH_TEST_VALUE(T, 22.995348157760091167706081204212893687052775606591209203948675272473773725021024450870565197330528784707135828761);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(12.25), T(2 * 12.25), T(6.75));
expected = BOOST_MATH_TEST_VALUE(T, 36.47281964229300610642392880149257389834650024065756742702265701321933782423217084029882132197130099355867287657);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-11), T(-12), T(6.75));
expected = BOOST_MATH_TEST_VALUE(T, 376.3166426246459656334542608880377435064935064935064935064935064935064935064935064935064935064935064935064935064);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-2), T(-12), T(6.75));
expected = BOOST_MATH_TEST_VALUE(T, 2.470170454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-224), T(-1205), T(6.75));
expected = BOOST_MATH_TEST_VALUE(T, 3.497033449657595724636676193024114597507981035316405619832857546161530808157860391434240068189887198094611519953);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(0.5), T(-1205.5), T(-6.75));
expected = BOOST_MATH_TEST_VALUE(T, 1.00281149043026925155096279505879868076290060374397866773878698584557482321961231721407215665017657501846692575);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-0.5), T(-1205.5), T(-6.75));
expected = BOOST_MATH_TEST_VALUE(T, 0.99719639844965644594352920596780535220516138060108955206195178371227403775248888108818326220977962797312690);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-12), T(16.25), T(1043.75));
expected = BOOST_MATH_TEST_VALUE(T, 1.26527673505477678311707565502355407505496430400394171269315320194708537626079491650410923064978320042481912e20);
BOOST_CHECK_CLOSE(computed, expected, tol * 3);
computed = hypergeometric_1F1(T(3.5), T(3.5), T(36.25));
expected = exp(T(36.25));
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-3.5), T(-3.5), T(36.25));
expected = exp(T(36.25));
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(1), T(2), T(36.25));
expected = boost::math::expm1(T(36.25)) / T(36.25);
BOOST_CHECK_CLOSE(computed, expected, tol * 3);
computed = hypergeometric_1F1(T(10.25), T(9.25), T(36.25));
expected = exp(T(36.25)) * (T(9.25) + T(36.25)) / T(9.25);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-10.25), T(-11.25), T(36.25));
expected = exp(T(36.25)) * (T(-11.25) + T(36.25)) / T(-11.25);
BOOST_CHECK_CLOSE(computed, expected, tol);
computed = hypergeometric_1F1(T(-10.25), T(-11.25), T(-36.25));
expected = exp(T(-36.25)) * (T(-11.25) + T(-36.25)) / T(-11.25);
BOOST_CHECK_CLOSE(computed, expected, tol);
}
template <class T>
void test_spots6(T, const char* type_name)
{
static const std::array<std::array<T, 4>, 186> hypergeometric_1F1_bugs = { {
{ { static_cast<double>(17955.561660766602), static_cast<double>(9.6968994205831605e-09), static_cast<double>(-82.406154185533524), SC_(6.98056008378736714088730927132364938220428678e-11) }},
{ { static_cast<double>(17955.561660766602), static_cast<double>(-9.6968994205831605e-09), static_cast<double>(-82.406154185533524), SC_(-6.98055306629610746072607353939306734740549551e-11) }},
{ { static_cast<double>(-17955.561660766602), static_cast<double>(-9.6968994205831605e-09), static_cast<double>(82.406154185533524), SC_(-42897094853118832762870100.8669248353530950866) }} ,
{ { static_cast<double>(17955.561660766602), static_cast<double>(17956.061660766602), static_cast<double>(82.406154185533524), SC_(613117565438499794408370861624072730.553215432) }},
{ { static_cast<double>(2.9127331452327709e-07), static_cast<double>(-0.99999970872668542), static_cast<double>(0.15018942760070786), SC_(0.987526018990506843793601092932108059727149508) }},
{ { static_cast<double>(-2.9127331452327709e-07), static_cast<double>(-1.0000002912733146), static_cast<double>(0.15018942760070786), SC_(0.987526120661366412484942089372497015837368389) }},
{ { static_cast<double>(6.7191087900739423e-13), static_cast<double>(-0.99999999999932809), static_cast<double>(0.0011913633891253994), SC_(0.999999289758605006762757201699750974296453229) }},
{ { static_cast<double>(6.7191087900739423e-13), static_cast<double>(-0.99999999999932809), static_cast<double>(-0.0011913633891253994), SC_(0.999999290885918468326416221021126912154021802) }},
{ { static_cast<double>(-6.7191087900739423e-13), static_cast<double>(-1.0000000000006719), static_cast<double>(0.0011913633891253994), SC_(0.999999289758606609651292394510404091049823243) }},
{ { static_cast<double>(-6.7191087900739423e-13), static_cast<double>(-1.0000000000006719), static_cast<double>(-0.0011913633891253994), SC_(0.999999290885916869252591036674587894145399498) }},
{ { static_cast<double>(1.2860067365774887e-17), static_cast<double>(6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(0.979404874070484696999110600576068012417904384) }},
{ { static_cast<double>(1.2860067365774887e-17), static_cast<double>(-6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(1.0205951259295150865252112924093487321207727) }},
{ { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(1.02059512592951530745923325071510441026202975) }},
{ { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(-6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(0.979404874070484909016444856299500644331897735) }},
{ { static_cast<double>(1.2860067365774887e-17), static_cast<double>(1), static_cast<double>(-2539.60133934021), SC_(0.999999999999999891757095137551552220860540801) }},
{ { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(1), static_cast<double>(-2539.60133934021), SC_(1.00000000000000010824290486244845922375479178) }},
{ { static_cast<double>(1.2860067365774887e-17), static_cast<double>(0.5), static_cast<double>(-2539.60133934021), SC_(0.999999999999999873931788919689096760455570214) }},
{ { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(0.5), static_cast<double>(-2539.60133934021), SC_(1.0000000000000001260682110803109183167444166) }},
{ { static_cast<double>(1.2860067365774887e-17), static_cast<double>(-0.5), static_cast<double>(-2539.60133934021), SC_(0.999999999999999899656990458526368219886894767) }},
{ { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(-0.5), static_cast<double>(-2539.60133934021), SC_(1.00000000000000010034300954147364037131355735) }},
{ { static_cast<double>(1.9561377367172441e-13), static_cast<double>(-0.99999999999980438), static_cast<double>(0.53720525559037924), SC_(0.791950585963666119273677451162365759080483409) }},
{ { static_cast<double>(1.9561377367172441e-13), static_cast<double>(-0.99999999999980438), static_cast<double>(-0.53720525559037924), SC_(0.898314630992769591673208399706587643905527327) }},
{ { static_cast<double>(-1.9561377367172441e-13), static_cast<double>(-1.0000000000001956), static_cast<double>(0.53720525559037924), SC_(0.791950585964025761367113514279915403442035074) }},
{ { static_cast<double>(-1.9561377367172441e-13), static_cast<double>(-1.0000000000001956), static_cast<double>(-0.53720525559037924), SC_(0.898314630992646771749564140770704893561753597) }},
{ { static_cast<double>(5.1851756946064858e-12), static_cast<double>(-0.99999999999481481), static_cast<double>(-774.06985878944397), SC_(1.91306610467163858324476828831735612399803649e-06) }},
{ { static_cast<double>(-5.1851756946064858e-12), static_cast<double>(-1.0000000000051852), static_cast<double>(-774.06985878944397), SC_(1.91306610479516297551035931150910859922270467e-06) }},
{{ static_cast<double>(4.782769898853794e-15), static_cast<double>(1.0000000000000049), static_cast<double>(43.289540141820908), SC_(715.678254892476818206948251991084031658534788) }},
{ { static_cast<double>(-4.782769898853794e-15), static_cast<double>(0.99999999999999523), static_cast<double>(43.289540141820908), SC_(-713.67825489247727251051792450091274703212426) }},
{ { static_cast<double>(4.782769898853794e-15), static_cast<double>(0.50000000000000477), static_cast<double>(43.289540141820908), SC_(8235.578376364917373771471380274179857713986) }},
{ { static_cast<double>(-4.782769898853794e-15), static_cast<double>(0.49999999999999523), static_cast<double>(43.289540141820908), SC_(-8233.57837636502669085205930058992320862281194) }},
{ { static_cast<double>(4.782769898853794e-15), static_cast<double>(-0.49999999999999523), static_cast<double>(43.289540141820908), SC_(-696269.800378137841948029488304613132151506346) }},
{ { static_cast<double>(-4.782769898853794e-15), static_cast<double>(-0.50000000000000477), static_cast<double>(43.289540141820908), SC_(696271.8003781336298001417038674968935893361) }},
{ { static_cast<double>(8.1104991963343309e-05), static_cast<double>(-0.99991889500803666), static_cast<double>(-289.12455415725708), SC_(7.89625448009377635153307897651433007437615965e-124) }},
{ { static_cast<double>(-8.1104991963343309e-05), static_cast<double>(-1.0000811049919633), static_cast<double>(-289.12455415725708), SC_(7.8949781467741574268884621364833028722017032e-124) }},
{{ static_cast<double>(-1.98018241448205767), static_cast<double>(1.98450573845762079), static_cast<double>(54.4977916804564302), SC_(2972026581564772.790187123046255523239732028) }},
{ { static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-0.50007823822942044), static_cast<double>(-1896.0561106204987), SC_(1.00058778866237037053151236215058095904086972) }},
// Unexpected high error : 2.48268e+91 Found : -9.61305e+268 Expected : -1.74382e+193
{ { static_cast<double>(5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(-1.74381782591884817018404492963109914357365958e+193) }},
// Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -9.61305077326281580724540507004198316499661687e+268 Expected : 1.74381782591870724567837900957146707932623893e+193
{ { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(1.74381782591870734495565763481520223752372107e+193) }},
//Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was - 13497.312248525042
{ { static_cast<double>(-0.00023636552788275367), static_cast<double>(0.49976363447211725), static_cast<double>(-55.448519088327885), SC_(1.00141219419064760011631555641142295011268795) }},
// Unexpected exception: Error in function boost::math::hypergeometric_pFq<long double>: Cancellation is so severe that no bits in the result are correct, last result was -13497.312248525042
{{ static_cast<double>(-0.00023636552788275367), static_cast<double>(-0.50023636552788275), static_cast<double>(-55.448519088327885), SC_(1.00093463146763986302362749764017215184711625) }},
// Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was - 1.3871133003351527e+47
{ { static_cast<double>(-1.6548533913638905e-10), static_cast<double>(0.49999999983451465), static_cast<double>(-169.20843148231506), SC_(1.00000000117356793527360151094991866549128017) }},
// Unexpected exception: Error in function boost::math::hypergeometric_pFq<long double>: Cancellation is so severe that no bits in the result are correct, last result was -1.3871133003351527e+47
{{ static_cast<double>(-1.6548533913638905e-10), static_cast<double>(-0.50000000016548529), static_cast<double>(-169.20843148231506), SC_(1.00000000084161045914716192484600809610013447) }},
// Unexpected high error : 17825.7893791562892147339880466461181640625 Found : -0.000253525216373273569459012577453904668800532818 Expected : -0.000253525216374277052779756536082800266740377992
{ { static_cast<double>(-2.0211181797563725e-14), static_cast<double>(-1.0000000000000202), static_cast<double>(-25.653068032115698), SC_(-0.000253525216374277055047768086884693917115210113) }},
// Unexpected high error: 1.79769e+308 Found: -inf Expected: -2.63233e-197
{{ static_cast<double>(235.44106131792068), static_cast<double>(-2.250966744069919e-13), static_cast<double>(-974.28781914710999), SC_(-2.63233018990922939037251029961929844581862228e-197) }},
// Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -inf Expected : -3.53316570137147325345279499243339692001224196e+226
{ { static_cast<double>(-235.44106131792068), static_cast<double>(-2.250966744069919e-13), static_cast<double>(974.28781914710999), SC_(-3.53316570137147343919975579872097464691424847e+226) }},
// Unexpected high error : 2.48268e+91 Found : -9.61305e+268 Expected : -1.74382e+193
{ { static_cast<double>(5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(-1.74381782591884817018404492963109914357365958e+193) }},
// Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -9.61305077326281580724540507004198316499661687e+268 Expected : 1.74381782591870724567837900957146707932623893e+193
{ { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(1.74381782591870734495565763481520223752372107e+193) }},
// Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was 3.0871891698197084e+73
{ { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(0.499999999999994), static_cast<double>(-240.42092034220695), SC_(1.00000000000004464930530925572237133417488137) }},
// Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the result are correct, last result was 3.0871891698197084e+73
{ { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-0.500000000000006), static_cast<double>(-240.42092034220695), SC_(1.00000000000003262784934420226963147689063665) }},
// Unexpected high error : 18466.4373304979599197395145893096923828125 Found : 1.32865406167486480872551302123696359558380209e-08 Expected : 1.3286540616694168317751162703647255236560909e-08
{ { static_cast<double>(6.772927684190258e-10), static_cast<double>(-0.99999999932270722), static_cast<double>(-483.69576895236969), SC_(1.32865406166941679958876322759721528297325713e-08) }},
// Unexpected high error: 1.79769e+308 Found: -nan(ind) Expected: 5.31173e-38
{{ static_cast<double>(6763.4877452850342), static_cast<double>(3.6834977949762315e-08), static_cast<double>(-210.20976513624191), SC_(5.31173132667573457976877380237496445775181141e-38) }},
// Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -nan(ind) Expected : 1.04274264437409856500364465136386556989276338e+54
{ { static_cast<double>(-6763.4877452850342), static_cast<double>(3.6834977949762315e-08), static_cast<double>(210.20976513624191), SC_(1.04274264437409861991447530452939035771734596e+54) }},
// Unexpected high error: 3.17219226436543247206316287281668161679098192e+185 Found: 1.00012411189051491970538746574092795078602734e+201 Expected: 14198882672502154063215954231296
{{ static_cast<double>(76763.042617797852), static_cast<double>(-21.722407214343548), static_cast<double>(-0.60326536209322512), SC_(14198882672502153010712531896984.8126667697959) }},
// Unexpected high error: 1.79769313486231570814527423731704356798070568e+308 Found: -2.39521645877904927856730119998375850409649219e+124 Expected: 2.3952164587795095929135248712964248422934629e+124
{{ static_cast<double>(-1.8857404964801872e-09), static_cast<double>(-226.52341184020042), static_cast<double>(160.86221924424171), SC_(2.39521645877950946848639784331327651190093595e+124) }},
// Unexpected high error : 73027.246763920571538619697093963623046875 Found : 0.000111810625893715248580992382976262433658121154 Expected : 0.000111810625895528292111404111697225971511215903
{ { static_cast<double>(-7.5220323642510769e-13), static_cast<double>(-1.0000000000007523), static_cast<double>(-17.948102783411741), SC_(0.00011181062589552829441403260197223627311023229) }},
// Unexpected high error: 111726.15160028330865316092967987060546875 Found: 0.00856985181006919560786627698689699172973632813 Expected: 0.00856985180985659310282098743982714950107038021
{{ static_cast<double>(5.6136137469239618e-15), static_cast<double>(-0.99999999999999434), static_cast<double>(-1989.8742001056671), SC_(0.00856985180985659334965068576732515544478559175) }},
// Unexpected high error : 10431.000000023717802832834422588348388671875 Found : 0.99999999999772626324556767940521240234375 Expected : 1.00000000000004241051954068097984418272972107
{ { static_cast<double>(-5.6136137469239618e-15), static_cast<double>(-0.50000000000000566), static_cast<double>(-1989.8742001056671), SC_(1.00000000000004243096226509338784935080089269) }},
// And more from error rate testing:
{{ (T)std::ldexp((double)-17079780487168000, -44), (T)std::ldexp((double)9462273998848000, -46), (T)std::ldexp((double)9928190459904000, -48), SC_(7.7358754011357422722746277257633664799903803239195e-72) }},
{{ (T)std::ldexp((double)-16238757384192000, -44), (T)std::ldexp((double)17248812490752000, -44), (T)std::ldexp((double)12549255331840000, -49), SC_(4.7354970214088286546733909450191631190700414608975e-10) }},
{{ static_cast<double>(-6.8543290253728628), static_cast<double>(607.72073245607316), static_cast<double>(253.26409819535911), SC_(0.024418741483258497441042709681531519387974841769189) }},
{{ (T)std::ldexp((double)-15569844699136000, -52), (T)std::ldexp((double)12855440629760000, -44), (T)std::ldexp((double)12563412279296000, -45), SC_(0.097879401070280078654536987721507669872679020399179) }},
{{ (T)std::ldexp((double)-13521484578816000, -48), (T)std::ldexp((double)11813014388736000, -46), (T)std::ldexp((double)12736881098752000, -48), SC_(9.1262751214688536871555425535678062558805718157237e-08) }},
{{ (T)std::ldexp((double)-13125670141952000, -44), (T)std::ldexp((double)16524914262016000, -44), (T)std::ldexp((double)12270166867968000, -49), SC_(2.0809215788388623809065210261671764534436583442155e-08) }},
{{ (T)std::ldexp((double)-9012443406336000, -45), (T)std::ldexp((double)12293411340288000, -46), (T)std::ldexp((double)15162862993408000, -52), SC_(0.00634911418172408957356631082162378669273898042) }},
{{ (T)std::ldexp((double)10907252916224000, -46), (T)std::ldexp((double)10872033234944000, -44), (T)std::ldexp((double)14845267734528000, -44), SC_(3.35597139167246486559762237420776458756928282e+152) }},
{{ (T)std::ldexp((double)10206210322432000, -44), (T)std::ldexp((double)-16798514331648000, -45), (T)std::ldexp((double)21261284909056000, -48), SC_(3.8172723666678171743099642722909945977624468e+207) }},
//{{ (T)std::ldexp((double)9125305942016000, -46), (T)std::ldexp((double)-15115828240384000, -45), (T)std::ldexp((double)9662868946944000, -47), SC_(4175579218962.24466854749118518544065513059142) }},
//
// These next few are the result of probing the boundary cases in hypergeometric_1F1_negative_b_recurrence_region
//
{{ (T)std::ldexp((double)10860755407856640, -40), (T)std::ldexp((double)-15992550230222440, -47), (T)std::ldexp((double)11953621172224000, -51), SC_(1.77767974631716859575450750736407296713916302e+278) }},
{{ (T)std::ldexp((double)10788477424245760, -40), (T)std::ldexp((double)-17098099940288104, -45), (T)std::ldexp((double)9309879533568000, -50), SC_(3.30879597828065234949261835734767876076477669e+268) }},
{{ (T)std::ldexp((double)10938221827471360, -40), (T)std::ldexp((double)-13207828614139084, -46), (T)std::ldexp((double)14276471291904000, -57), SC_(0.00563892736925233243283328398477659041011689599) }},
{ { (T)std::ldexp((double)10886339790484480, -40), (T)std::ldexp((double)-15267677514969908, -46), (T)std::ldexp((double)11568125313024000, -56), SC_(0.000743168361387021436166355590813648069510383979) } },
{ { (T)std::ldexp((double)10486036094119936, -40), (T)std::ldexp((double)-15535492710109184, -41), (T)std::ldexp((double)17014293405696000, -45), SC_(-2.61817515260939017621443182916266462279292638e+230) } },
{ { (T)std::ldexp((double)10485257266971648, -40), (T)std::ldexp((double)-17826711054409018, -35), (T)std::ldexp((double)17138334978048000, -44), SC_(1.70138735099219741672706572460585684251928784e-08) } },
{ { (T)std::ldexp((double)10485122560373760, -40), (T)std::ldexp((double)-11098279821997376, -39), (T)std::ldexp((double)16925852270592000, -45), SC_(9.77378642649349178995585980824930703376759021e-98) } },
{ { (T)std::ldexp((double)10485292967829248, -40), (T)std::ldexp((double)-14859721380002656, -35), (T)std::ldexp((double)13729956970496000, -44), SC_(3.41094899910311302761937103011397882987669395e-08) } },
{ { (T)std::ldexp((double)10485037389193216, -40), (T)std::ldexp((double)-10840488483391544, -35), (T)std::ldexp((double)17577061875712000, -45), SC_(2.8030884395368690164859926372380406504460219e-07) } },
//
// Negative a and b worst cases:
{ { (T)std::ldexp((double)-9281686323200000, -44), (T)std::ldexp((double)-14062138056704000, -44), (T)std::ldexp((double)13563284652032000, -44), SC_(2.8338102961174890442403751063892055396228341374378e+265) } },
{ { (T)std::ldexp((double)-17049048150016000, -44), (T)std::ldexp((double)-16971363917824000, -45), (T)std::ldexp((double)11759598960640000, -49), SC_(4636596575297708282.1539119952275597833292408543916) }},
{ { (T)std::ldexp((double)-14233964060672000, -45), (T)std::ldexp((double)-12648356216832000, -47), (T)std::ldexp((double)9597206757376000, -46), SC_(-1.2995296554447445191533190670521132012426135496934e+104) }},
{ { (T)std::ldexp((double)-16705334214656000, -45), (T)std::ldexp((double)-15447756718080000, -46), (T)std::ldexp((double)16395884134400000, -47), SC_(5.4068014134661635929301319845768046995946557071618e+113) }},
{ { (T)std::ldexp((double)-13991530405888000, -45), (T)std::ldexp((double)-10196587347968000, -46), (T)std::ldexp((double)13331347734528000, -46), SC_(1.2861275297661534781908508971693782447411136476694e+138) }},
{ { (T)std::ldexp((double)-15134950760448000, -45), (T)std::ldexp((double)-14587193786368000, -48), (T)std::ldexp((double)17022855921664000, -46), SC_(-8.8168904087758007346518546320759101059296394741359e+115) }},
{ { (T)std::ldexp((double)-14854672039936000, -45), (T)std::ldexp((double)-10436558200832000, -45), (T)std::ldexp((double)11370918969344000, -47), SC_(8.8553524727253411744552846056891456360191660433059e+54) } },
{ { (T)std::ldexp((double)-16711069286400000, -46), (T)std::ldexp((double)-14809815056384000, -46), (T)std::ldexp((double)10469312954368000, -47), SC_(50343352353398198766339890377687038177.388095267191) } },
{ { (T)std::ldexp((double)-15026786402304000, -45), (T)std::ldexp((double)-16687356968960000, -46), (T)std::ldexp((double)14895621603328000, -47), SC_(2.8532956042460265690059969666558072704044483623242e+95) } },
{ { (T)std::ldexp((double)-15519073435648000, -45), (T)std::ldexp((double)-14162009718784000, -45), (T)std::ldexp((double)9997818855424000, -48), SC_(95767987018108517.763999577428194082282035178055037) } },
{ { (T)std::ldexp((double)-15317481275392000, -46), (T)std::ldexp((double)-16531865931776000, -44), (T)std::ldexp((double)17586268880896000, -45), SC_(1.4701248047083724279783071194324315286789986738882e+104) }},
{ { (T)std::ldexp((double)-11335669673984000, -44), (T)std::ldexp((double)-13146047094784000, -44), (T)std::ldexp((double)13671437864960000, -44), SC_(-2.1887607284987089539904337941443591993019781369247e+288) }},
{ { (T)std::ldexp((double)-16877985234944000, -46), (T)std::ldexp((double)-14384006086656000, -46), (T)std::ldexp((double)9074349342720000, -47), SC_(15376193613462463541358751744530105.412429016705833) }},
{ { (T)std::ldexp((double)-9751199809536000, -45), (T)std::ldexp((double)-17654191685632000, -47), (T)std::ldexp((double)10587451850752000, -47), SC_(-1.9601415510439595625538337964298353914980331018955e+68) }},
{ { (T)std::ldexp((double)-15233620754432000, -45), (T)std::ldexp((double)-12708283072512000, -46), (T)std::ldexp((double)10255461007360000, -46), SC_(-5.4344106361679075861859567858016187271235441673635e+125) }},
{ { (T)std::ldexp((double)-11241354149888000, -45), (T)std::ldexp((double)-9580579905536000, -45), (T)std::ldexp((double)12224976846848000, -47), SC_(12046856548470067405870726490464935201150430438.035) }},
//
// Bugs found while testing color maps:
//
{ { SC_(0.078125000000000000), SC_(-0.039062500000000000), SC_(0.5), SC_(-0.3371910410915676603577770246237158427221) }},
{ { SC_(-19.492187500000000), SC_(0.50781250000000000), SC_(0.5), SC_(1.2551298228307647570646714060395253358015) }},
//
// Special cases for a,b equal and negative integers, see:
//
{ {-1, -1, 0.9999999999990905052982270717620850, SC_(1.9999999999990905052982270717620850)} },
{ { -2, -2, 0.9999999999990905052982270717620850, SC_(2.4999999999981810105964545571144762) } },
{ { -3, -3, 0.9999999999990905052982270717620850, SC_(2.6666666666643929299122351732524916) } },
{ { -4, -4, 0.9999999999990905052982270717620850, SC_(2.7083333333309080141286065586746589) } },
{ { -5, -5, 0.9999999999990905052982270717620850, SC_(2.7166666666642034518493660889297968) } },
{ { -6, -6, 0.9999999999990905052982270717620850, SC_(2.7180555555530847616157402206496325) } },
{ { -7, -7, 0.9999999999990905052982270717620850, SC_(2.7182539682514961968413528410609673) } },
{ { -8, -8, 0.9999999999990905052982270717620850, SC_(2.7182787698387976036876421724036051) } },
{ { -9, -9, 0.9999999999990905052982270717620850, SC_(2.7182815255707199797197951818652022) } },
{ { -10, -10, 0.9999999999990905052982270717620850, SC_(2.7182818011439122170723781245206092) } },
{ { -11, -11, 0.9999999999990905052982270717620850, SC_(2.7182818261960206022634645412810530) } },
{ { -12, -12, 0.9999999999990905052982270717620850, SC_(2.7182818282836963010274896793573756) } },
{ { -13, -13, 0.9999999999990905052982270717620850, SC_(2.7182818284442867393938070953642430) } },
{ { -14, -14, 0.9999999999990905052982270717620850, SC_(2.7182818284557574849913907639252443) } },
{ { -15, -15, 0.9999999999990905052982270717620850, SC_(2.7182818284565222013645623129904880) } },
{ { -16, -16, 0.9999999999990905052982270717620850, SC_(2.7182818284565699961378854913379726) } },
{ { -17, -17, 0.9999999999990905052982270717620850, SC_(2.7182818284565728075951397933896427)} },
{ { -18, -18, 0.9999999999990905052982270717620850, SC_(2.7182818284565729637872094766949018) } },
{ { -19, -19, 0.9999999999990905052982270717620850, SC_(2.7182818284565729720078447231771757) } },
{ { -20, -20, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724188764855009155) } },
{ { -21, -21, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724384494265639330) } },
{ { -22, -22, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393391057031602) } },
{ { -23, -23, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393777874048657) } },
{ { -24, -24, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393793991424368) } },
{ { -25, -25, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794636119396) } },
{ { -26, -26, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794660915359) } },
{ { -27, -27, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661833728) } },
{ { -28, -28, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661866527) } },
{ { -29, -29, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661867658) } },
{ { -30, -30, 0.9999999999990905052982270717620850, SC_(2.7182818284565729724393794661867696) } },
{ {-1, -1, 23.5, 24.500000000000000000000000000000000} },
{ { -2, -2, 23.5, SC_(300.62500000000000000000000000000000) } },
{ { -3, -3, 23.5, SC_(2463.6041666666666666666666666666667) } },
{ { -4, -4, 23.5, SC_(15171.106770833333333333333333333333) } },
{ { -5, -5, 23.5, SC_(74896.369010416666666666666666666667) } },
{ { -6, -6, 23.5, SC_(308820.31278211805555555555555555556) } },
{ { -7, -7, 23.5, SC_(1.0941364097299727182539682539682540e6) } },
{ { -8, -8, 23.5, SC_(3.4010024445142957899305555555555556e6) } },
{ { -9, -9, 23.5, SC_(9.4244859797844726993083112874779541e6) } },
{ { -10, -10, 23.5, SC_(2.3579672287669388436346037257495591e7) } },
{ { -11, -11, 23.5, SC_(5.3820297581787162965472088193442360e7) } },
{ { -12, -12, 23.5, SC_(1.1304152211610113808501060460967145e8) } },
{ { -13, -13, 23.5, SC_(2.2009527415889947772417638428516250e8) } },
{ { -14, -14, 23.5, SC_(3.9979264365931097640420465731187961e8) } },
{ { -15, -15, 23.5, SC_(6.8131852254328899100291561838706976e8) } },
{ { -16, -16, 23.5, SC_(1.0948096571541316999447723424662553e9) } },
{ { -17, -17, 23.5, SC_(1.6664003432338260328938095786933647e9) } },
{ { -18, -18, 23.5, SC_(2.4126437389489825231328304148787575e9) } },
{ { -19, -19, 23.5, SC_(3.3356289915440444979021456596343750e9) } },
{ { -20, -20, 23.5, SC_(4.4201366633432423182560910722222255e9) } },
{ { -21, -21, 23.5, SC_(5.6337523913090113076997918910705344e9) } },
{ { -22, -22, 23.5, SC_(6.9301146461815372736964723112039553e9) } },
{ { -23, -23, 23.5, SC_(8.2546586892034659780843849143837548e9) } },
{ { -24, -24, 23.5, SC_(9.5516080646624378344642160049973086e9) } },
{ { -25, -25, 23.5, SC_(1.0770740477593871379461257230174049e10) } },
{ { -26, -26, 23.5, SC_(1.1872648620051128622054736799083795e10) } },
{ { -27, -27, 23.5, SC_(1.2831716818115778444312024572023760e10) } },
{ { -28, -28, 23.5, SC_(1.3636649055777180973706533952884087e10) } },
{ { -29, -29, 23.5, SC_(1.4288921731123489919940015692546766e10) } },
{ { -30, -30, 23.5, SC_(1.4799868660144765261156243055282531e10) } },
//
// Special cases for 1F1[-n, n, n], recurrence relations explode for these
// so we need to take special care, see:
//
{ {-1, 1, 1, 0} },
{ { -2, 2, 2, SC_(-0.33333333333333333333333333333333333) } },
{ { -3, 3, 3, SC_(-0.20000000000000000000000000000000000) } },
{ { -4, 4, 4, SC_(-0.028571428571428571428571428571428571) } },
{ { -5, 5, 5, SC_(0.034391534391534391534391534391534392) } },
{ { -6, 6, 6, SC_(0.025974025974025974025974025974025974) } },
{ { -7, 7, 7, SC_(0.0055458430458430458430458430458430458) } },
{ { -8, 8, 8, SC_(-0.0034844168177501510834844168177501511) } },
{ { -9, 9, 9, SC_(-0.0032789269553975436328377504848093083) } },
{ { -10, 10, 10, SC_(-0.00090655818209997776561244053504115424) } },
{ { -11, 11, 11, SC_(0.00032882634672802494317065057641990169) } },
{ { -12, 12, 12, SC_(0.00040482026290537337976908770901425171) } },
{ { -13, 13, 13, SC_(0.00013693942490239899363731963133279724) } },
{ { -14, 14, 14, SC_(-0.000027114521961598289657552462032956946) } },
{ { -15, 15, 15, SC_(-0.000048914265972106416241933622562193726) } },
{ { -16, 16, 16, SC_(-0.000019682683030825726780784406799223748) } },
{ { -17, 17, 17, SC_(1.5839922420851958320021705281180291e-6) } },
{ { -18, 18, 18, SC_(5.7780970016822066007807309411610877e-6) } },
{ { -19, 19, 19, SC_(2.7286504926687308865490707120168935e-6) } },
{ { -20, 20, 20, SC_(3.0777012229800824850242341264747930e-8) } },
{ { -21, 21, 21, SC_(-6.6559501148858176979489331026765573e-7) } },
{ { -22, 22, 22, SC_(-3.6755193543651782101726439542497979e-7) } },
{ { -23, 23, 23, SC_(-3.2293485126433594872416984294551283e-8) } },
{ { -24, 24, 24, SC_(7.4437711540037326179190703001784924e-8) } },
{ { -25, 25, 25, SC_(4.8312843928329924033336815590280938e-8) } },
{ { -26, 26, 26, SC_(7.5047977770302588786691782818325643e-9) } },
{ { -27, 27, 27, SC_(-8.0223979804469656047588860706683494e-9) } },
{ { -28, 28, 28, SC_(-6.2125286411657869483728921158018766e-9) } },
{ { -29, 29, 29, SC_(-1.3521578972057573423569167878458172e-9) } },
{{ -30, 30, 30, SC_(8.2238878884841599031462003461115991e-10) } },
// https://github.com/boostorg/math/issues/1034
{{ 13, 1.5f, 61, SC_(1.35508577094765660270265300640877455638098585524020525369044e39)}},
{{ 13, 1.5f - T(1)/128, 61, SC_(1.40067238333701986992154961431485209677766220602448290643906e39)}},
{{ 13, 1.5f + T(1)/128, 61, SC_(1.31105748771677778012064837998217769289913724450105998963999e39)}},
} };
static const std::array<std::array<T, 4>, 2> hypergeometric_1F1_big_bugs = { {
#if DBL_MAX_EXP == LDBL_MAX_EXP
{{ static_cast<double>(7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), BOOST_MATH_HUGE_CONSTANT(T, 1000, 4.33129800901478785957996719992774682013355926e+668) }},
{{ static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), BOOST_MATH_HUGE_CONSTANT(T, 1000, -4.3248750673398590673783317624407455467680038e+668) }},
#else
{ { static_cast<double>(7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), SC_(4.33129800901478785957996719992774682013355926e+668) } },
{ { static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), SC_(-4.3248750673398590673783317624407455467680038e+668) } },
#endif
} };
do_test_1F1<T>(hypergeometric_1F1_bugs, type_name, "Bug cases");
if(std::numeric_limits<T>::max_exponent10 > 800)
do_test_1F1<T>(hypergeometric_1F1_big_bugs, type_name, "Bug cases - oversized");
else
{
for (unsigned i = 0; i < hypergeometric_1F1_big_bugs.size(); ++i)
{
T val = boost::math::hypergeometric_1F1(hypergeometric_1F1_big_bugs[i][0], hypergeometric_1F1_big_bugs[i][1], hypergeometric_1F1_big_bugs[i][2]);
BOOST_CHECK((boost::math::isinf)(val));
}
}
}
template <class T>
void test_spots7(T, const char* type_name)
{
#include "hypergeometric_1f1_neg_int.ipp"
do_test_1F1<T>(hypergeometric_1f1_neg_int, type_name, "Both parameters negative integers.");
}
template <class T>
void test_spots(T z, const char* type_name)
{
test_spots1(z, type_name);
test_spots2(z, type_name);
//
// Test ranges that are limited to double precision, these contain test cases
// which require full double precision for the inputs, so we don't test
// at float precision as well as higher precisions:
//
if (std::numeric_limits<T>::digits10 == std::numeric_limits<double>::digits10)
test_spots3(z, type_name);
#ifdef TEST_UNSOLVED
test_spots4(z, type_name);
#endif
test_spots5(z, type_name);
//
// Try as we might, we can't get better than quad precision on some of these:
//
if(std::numeric_limits<T>::digits >= std::numeric_limits<double>::digits && std::numeric_limits<T>::digits <= 128)
test_spots6(z, type_name);
test_spots7(z, type_name);
}
// Tests the Mellin transform formula given here: https://dlmf.nist.gov/13.10, Equation 13.10.10
template <class Real>
void test_hypergeometric_mellin_transform()
{
using boost::math::hypergeometric_1F1;
using boost::math::quadrature::exp_sinh;
using boost::math::tgamma;
using std::pow;
// Constraint: 0 < lambda < a.
Real lambda = 0.5;
Real a = 1;
Real b = 3;
auto f = [&](Real t)->Real { return pow(t, lambda - 1)*hypergeometric_1F1(a, b, -t); };
auto integrator = exp_sinh<double>();
Real computed = integrator.integrate(f, boost::math::tools::epsilon<Real>());
Real expected = tgamma(b)*tgamma(lambda)*tgamma(a - lambda) / (tgamma(a)*tgamma(b - lambda));
Real tol = boost::math::tools::epsilon<Real>() * 5;
BOOST_CHECK_CLOSE_FRACTION(computed, expected, tol);
}
// Tests the Laplace transform formula given here: https://dlmf.nist.gov/13.10, Equation 13.10.4
template <class Real>
void test_hypergeometric_laplace_transform()
{
using boost::math::hypergeometric_1F1;
using boost::math::quadrature::exp_sinh;
using boost::math::tgamma;
using std::pow;
using std::exp;
// Set a = 1 blows up for some reason . . .
Real a = -1;
Real b = 3;
Real z = 1.5;
auto f = [&](Real t)->Real { return exp(-z * t)*pow(t, b - 1)*hypergeometric_1F1(a, b, t); };
auto integrator = exp_sinh<double>();
Real computed = integrator.integrate(f, boost::math::tools::epsilon<Real>());
Real expected = tgamma(b) / (pow(z, b)*pow(1 - 1 / z, a));
Real tol = boost::math::tools::epsilon<Real>() * 200;
BOOST_CHECK_CLOSE(computed, expected, tol);
}
|