1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// Copyright Matthew Pulver 2018 - 2019.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
#include "test_autodiff.hpp"
#include <boost/math/tools/test_value.hpp>
BOOST_AUTO_TEST_SUITE(test_autodiff_4)
BOOST_AUTO_TEST_CASE_TEMPLATE(lround_llround_lltrunc_truncl, T,
all_float_types) {
using boost::math::llround;
using boost::math::lltrunc;
using boost::math::lround;
using boost::multiprecision::llround;
using boost::multiprecision::lltrunc;
using boost::multiprecision::lround;
using detail::llround;
using detail::lltrunc;
using detail::lround;
using detail::truncl;
using std::truncl;
constexpr std::size_t m = 3;
const auto &cx = static_cast<T>(3.25);
auto x = make_fvar<T, m>(cx);
auto yl = lround(x);
BOOST_CHECK_EQUAL(yl, lround(cx));
auto yll = llround(x);
BOOST_CHECK_EQUAL(yll, llround(cx));
BOOST_CHECK_EQUAL(lltrunc(cx), lltrunc(x));
#ifndef BOOST_NO_CXX17_IF_CONSTEXPR
if constexpr (!bmp::is_number<T>::value &&
!bmp::is_number_expression<T>::value) {
BOOST_CHECK_EQUAL(truncl(x), truncl(cx));
}
#endif
}
BOOST_AUTO_TEST_CASE_TEMPLATE(equality, T, all_float_types) {
BOOST_MATH_STD_USING
using boost::math::epsilon_difference;
using boost::math::fpclassify;
using boost::math::ulp;
using std::fpclassify;
constexpr std::size_t m = 3;
// check zeros
{
auto x = make_fvar<T, m>(T(0));
auto y = T(-0.0);
BOOST_CHECK_EQUAL(x.derivative(0u), y);
}
}
#if defined(BOOST_AUTODIFF_TESTING_INCLUDE_MULTIPRECISION)
BOOST_AUTO_TEST_CASE_TEMPLATE(multiprecision, T, multiprecision_float_types) {
using boost::multiprecision::fabs;
using detail::fabs;
using std::fabs;
const T eps = 3000 * std::numeric_limits<T>::epsilon();
constexpr std::size_t Nw = 3;
constexpr std::size_t Nx = 2;
constexpr std::size_t Ny = 4;
constexpr std::size_t Nz = 3;
const auto w = make_fvar<T, Nw>(11);
const auto x = make_fvar<T, 0, Nx>(12);
const auto y = make_fvar<T, 0, 0, Ny>(13);
const auto z = make_fvar<T, 0, 0, 0, Nz>(14);
const auto v =
mixed_partials_f(w, x, y, z); // auto = autodiff_fvar<T,Nw,Nx,Ny,Nz>
// Calculated from Mathematica symbolic differentiation.
const T answer = BOOST_MATH_TEST_VALUE(T, 1976.31960074779771777988187529041872090812118921875499076582535951111845769110560421820940516423255314);
// BOOST_CHECK_CLOSE(v.derivative(Nw,Nx,Ny,Nz), answer, eps); // Doesn't work
// for cpp_dec_float
const T relative_error =
static_cast<T>(fabs(v.derivative(Nw, Nx, Ny, Nz) / answer - 1));
BOOST_CHECK_LT(relative_error, eps);
}
#endif
BOOST_AUTO_TEST_CASE_TEMPLATE(acosh_hpp, T, all_float_types) {
using boost::math::acosh;
using test_constants = test_constants_t<T>;
static constexpr auto m = test_constants::order;
test_detail::RandomSample<T> x_sampler{1, 100};
for (auto i : boost::irange(test_constants::n_samples)) {
std::ignore = i;
auto x = x_sampler.next();
auto autodiff_v = acosh(make_fvar<T, m>(x));
auto anchor_v = acosh(x);
BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
1e3 * test_constants::pct_epsilon());
}
}
BOOST_AUTO_TEST_CASE_TEMPLATE(asinh_hpp, T, all_float_types) {
using boost::math::asinh;
using test_constants = test_constants_t<T>;
static constexpr auto m = test_constants::order;
test_detail::RandomSample<T> x_sampler{-100, 100};
for (auto i : boost::irange(test_constants::n_samples)) {
std::ignore = i;
auto x = x_sampler.next();
auto autodiff_v = asinh(make_fvar<T, m>(x));
auto anchor_v = asinh(x);
BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
1e3 * test_constants::pct_epsilon());
}
}
BOOST_AUTO_TEST_CASE_TEMPLATE(atanh_hpp, T, all_float_types) {
using boost::math::nextafter;
using std::nextafter;
using boost::math::atanh;
using test_constants = test_constants_t<T>;
static constexpr auto m = test_constants::order;
test_detail::RandomSample<T> x_sampler{-1, 1};
for (auto i : boost::irange(test_constants::n_samples)) {
std::ignore = i;
auto x = nextafter(x_sampler.next(), T(0));
auto autodiff_v = atanh(make_fvar<T, m>(x));
auto anchor_v = atanh(x);
BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
1e3 * test_constants::pct_epsilon());
}
}
BOOST_AUTO_TEST_CASE_TEMPLATE(atan_hpp, T, all_float_types) {
using boost::math::float_prior;
using boost::math::fpclassify;
using boost::math::signbit;
using boost::math::differentiation::detail::atan;
using boost::multiprecision::atan;
using boost::multiprecision::fabs;
using boost::multiprecision::fpclassify;
using boost::multiprecision::signbit;
using detail::fabs;
using std::atan;
using std::fabs;
using test_constants = test_constants_t<T>;
static constexpr auto m = test_constants::order;
test_detail::RandomSample<T> x_sampler{-1, 1};
for (auto i : boost::irange(test_constants::n_samples)) {
std::ignore = i;
auto x = T(1);
while (fpclassify(T(fabs(x) - 1)) == FP_ZERO) {
x = x_sampler.next();
}
auto autodiff_v = atan(make_fvar<T, m>(x));
auto anchor_v = atan(x);
BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
T(1e3) * test_constants::pct_epsilon());
}
}
BOOST_AUTO_TEST_CASE_TEMPLATE(bernoulli_hpp, T, all_float_types) {
using boost::multiprecision::min;
using std::min;
using test_constants = test_constants_t<T>;
static constexpr auto m = test_constants::order;
for (auto i : boost::irange(test_constants::n_samples)) {
{
auto autodiff_v = boost::math::bernoulli_b2n<autodiff_fvar<T, m>>(i);
auto anchor_v = boost::math::bernoulli_b2n<T>(i);
BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
50 * test_constants::pct_epsilon());
}
{
auto i_ = (min)(19, i);
auto autodiff_v = boost::math::tangent_t2n<autodiff_fvar<T, m>>(i_);
auto anchor_v = boost::math::tangent_t2n<T>(i_);
BOOST_CHECK_CLOSE(autodiff_v.derivative(0u), anchor_v,
50 * test_constants::pct_epsilon());
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|