1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
// Copyright John Maddock 2013
// Copyright Christopher Kormanyos 2013.
// Copyright Paul A. Bristow 2013.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning(disable : 4127) // conditional expression is constant.
# pragma warning(disable : 4512) // assignment operator could not be generated.
# pragma warning(disable : 4996) // use -D_SCL_SECURE_NO_WARNINGS.
#endif
//#include <pch_light.hpp> // commented out during testing.
//#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/cstdint.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/airy.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <typeinfo>
#include <iostream>
#include <iomanip>
// #include <boost/math/tools/
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the functions that evaluate zeros (or roots) of Bessel, Neumann and Airy functions.
// Spot tests which compare our results with selected values computed
// using the online special function calculator at functions.wolfram.com,
// and values generated with Boost.Multiprecision at about 1000-bit or 100 decimal digits precision.
// We are most grateful for the invaluable
// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/BesselFunctionZeros.html
// and the newer http://www.wolframalpha.com/
// See also NIST Handbook of Mathematical Function http://dlmf.nist.gov/10.21
/*
Tests of cyl Bessel and cyl Neumann zeros.
==========================================
The algorithms for estimating the roots of both cyl. Bessel
as well as cyl. Neumann have the same cross-over points,
and also use expansions that have the same order of approximation.
Therefore, tests will be equally effective for both functions in the regions of order.
I have recently changed a critical cross-over in the algorithms
from a value of order of 1.2 to a value of order of 2.2.
In addition, there is a critical cross-over in the rank of the
zero from rank 1 to rank 2 and above. The first zero is
treated differently than the remaining ones.
The test cover various regions of order,
each one tested with several zeros:
* Order 219/100: This checks a region just below a critical cutoff.
* Order 221/100: This checks a region just above a critical cutoff.
* Order 0: Something always tends to go wrong at zero.
* Order 1/1000: A small order.
* Order 71/19: Merely an intermediate order.
* Order 7001/19: A medium-large order, small enough to retain moderate efficiency of calculation.
There are also a few selected high zeros
such as the 1000th zero for a few modest orders such as 71/19, etc.
Tests of Airy zeros.
====================
The Airy zeros algorithms use tabulated values for the first 10 zeros,
whereby algorithms are used for rank 11 and higher.
So testing the zeros of Ai and Bi from 1 through 20 handles
this cross-over nicely.
In addition, the algorithms for the estimates of the zeros
become increasingly accurate for larger, negative argument.
On the other hand, the zeros become increasingly close
for large, negative argument. So another nice test
involves testing pairs of zeros for different orders of
magnitude of the zeros, to insure that the program
properly resolves very closely spaced zeros.
*/
template <class RealType>
void test_bessel_zeros(RealType)
{
// Basic sanity checks for finding zeros of Bessel and Airy function.
// where template parameter RealType can be float, double, long double,
// or real_concept, a prototype for user-defined floating-point types.
// Parameter RealType is only used to communicate the RealType, float, double...
// and is an arbitrary zero for all tests.
RealType tolerance = 5 * (std::max)(
static_cast<RealType>(boost::math::tools::epsilon<long double>()),
boost::math::tools::epsilon<RealType>());
std::cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << std::endl;
//
// An extra fudge factor for real_concept which has a less accurate tgamma:
RealType tolerance_tgamma_extra = std::numeric_limits<RealType>::is_specialized ? 1 : 15;
// http://www.wolframalpha.com/
using boost::math::cyl_bessel_j_zero; // (nu, j)
using boost::math::isnan;
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast<RealType>(0), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast<RealType>(-1.5), 0), std::domain_error);
// Abuse with infinity and max.
if (std::numeric_limits<RealType>::has_infinity)
{
//BOOST_CHECK_EQUAL(cyl_bessel_j_zero(static_cast<RealType>(std::numeric_limits<RealType>::infinity()), 1),
// static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
// unknown location(0): fatal error in "test_main":
// class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::domain_error> >:
// Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Order argument is 1.#INF, but must be finite >= 0 !
// Note that the reported type long double is not the type of the original call RealType,
// but the promoted value, here long double, if applicable.
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast<RealType>(std::numeric_limits<RealType>::infinity()), 1),
std::domain_error);
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast<RealType>(-std::numeric_limits<RealType>::infinity()), 1),
std::domain_error);
}
// Test with maximum value of v that will cause evaluation error
//BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(boost::math::tools::max_value<RealType>(), 1), std::domain_error);
// unknown location(0): fatal error in "test_main":
// class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class boost::math::evaluation_error> >:
// Error in function boost::math::bessel_jy<double>(double,double): Order of Bessel function is too large to evaluate: got 3.4028234663852886e+038
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(boost::math::tools::max_value<RealType>(), 1), boost::math::evaluation_error);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(boost::math::tools::min_value<RealType>(), 1),
static_cast<RealType>(2.4048255576957727686216318793264546431242449091460L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(-cyl_bessel_j_zero(boost::math::tools::min_value<RealType>(), 1),
static_cast<RealType>(-2.4048255576957727686216318793264546431242449091460L), tolerance);
// Checks on some spot values.
// http://mathworld.wolfram.com/BesselFunctionZeros.html provides some spot values,
// evaluation at 50 decimal digits using WoldramAlpha.
/* Table[N[BesselJZero[0, n], 50], {n, 1, 5, 1}]
n |
1 | 2.4048255576957727686216318793264546431242449091460
2 | 5.5200781102863106495966041128130274252218654787829
3 | 8.6537279129110122169541987126609466855657952312754
4 | 11.791534439014281613743044911925458922022924699695
5 | 14.930917708487785947762593997388682207915850115633
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(0), 1), static_cast<RealType>(2.4048255576957727686216318793264546431242449091460L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(0), 2), static_cast<RealType>(5.5200781102863106495966041128130274252218654787829L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(0), 3), static_cast<RealType>(8.6537279129110122169541987126609466855657952312754L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(0), 4), static_cast<RealType>(11.791534439014281613743044911925458922022924699695L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(0), 5), static_cast<RealType>(14.930917708487785947762593997388682207915850115633L), tolerance);
{ // Same test using the multiple zeros version.
std::vector<RealType> zeros;
cyl_bessel_j_zero(static_cast<RealType>(0.0), 1, 3, std::back_inserter(zeros) );
BOOST_CHECK_CLOSE_FRACTION(zeros[0], static_cast<RealType>(2.4048255576957727686216318793264546431242449091460L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(zeros[1], static_cast<RealType>(5.5200781102863106495966041128130274252218654787829L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(zeros[2], static_cast<RealType>(8.6537279129110122169541987126609466855657952312754L), tolerance);
}
// 1/1000 a small order.
/* Table[N[BesselJZero[1/1000, n], 50], {n, 1, 4, 1}]
n |
1 | 2.4063682720422009275161970278295108254321633626292
2 | 5.5216426858401848664019464270992222126391378706092
3 | 8.6552960859298799453893840513333150237193779482071
4 | 11.793103797689738596231262077785930962647860975357
Table[N[BesselJZero[1/1000, n], 50], {n, 10, 20, 1}]
n |
10 | 30.636177039613574749066837922778438992469950755736
11 | 33.777390823252864715296422192027816488172667994611
12 | 36.918668992567585467000743488690258054442556198147
13 | 40.059996426251227493370316149043896483196561190610
14 | 43.201362392820317233698309483240359167380135262681
15 | 46.342759065846108737848449985452774243376260538634
16 | 49.484180603489984324820981438067325210499739716337
17 | 52.625622557085775090390071484188995092211215108718
18 | 55.767081479279692992978326069855684800673801918763
19 | 58.908554657366270044071505013449016741804538135905
20 | 62.050039927521244984641179233170843941940575857282
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1)/1000, 1), static_cast<RealType>(2.4063682720422009275161970278295108254321633626292L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1)/1000, 4), static_cast<RealType>(11.793103797689738596231262077785930962647860975357L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1)/1000, 10), static_cast<RealType>(30.636177039613574749066837922778438992469950755736L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1)/1000, 20), static_cast<RealType>(62.050039927521244984641179233170843941940575857282L), tolerance);
/*
Table[N[BesselJZero[1, n], 50], {n, 1, 4, 1}]
n |
1 | 3.8317059702075123156144358863081607665645452742878
2 | 7.0155866698156187535370499814765247432763115029142
3 | 10.173468135062722077185711776775844069819512500192
4 | 13.323691936314223032393684126947876751216644731358
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1), 1), static_cast<RealType>(3.8317059702075123156144358863081607665645452742878L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1), 2), static_cast<RealType>(7.0155866698156187535370499814765247432763115029142L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1), 3), static_cast<RealType>(10.173468135062722077185711776775844069819512500192L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(1), 4), static_cast<RealType>(13.323691936314223032393684126947876751216644731358L), tolerance);
/*
Table[N[BesselJZero[5, n], 50], {n, 1, 5, 1}]
n |
1 | 8.7714838159599540191228671334095605629810770148974
2 | 12.338604197466943986082097644459004412683491122239
3 | 15.700174079711671037587715595026422501346662246893
4 | 18.980133875179921120770736748466932306588828411497
5 | 22.217799896561267868824764947529187163096116704354
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(5), 1), static_cast<RealType>(8.7714838159599540191228671334095605629810770148974L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(5), 2), static_cast<RealType>(12.338604197466943986082097644459004412683491122239L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(5), 3), static_cast<RealType>(15.700174079711671037587715595026422501346662246893L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(5), 4), static_cast<RealType>(18.980133875179921120770736748466932306588828411497L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(5), 5), static_cast<RealType>(22.217799896561267868824764947529187163096116704354L), tolerance);
// An intermediate order
/*
Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}]
7.27317519383164895031856942622907655889631967016227,
10.7248583088831417325361727458514166471107495990849,
14.0185045994523881061204595580426602824274719315813,
17.2524984591704171821624871665497773491959038386104,
20.4566788740445175951802340838942858854605020778141,
23.6436308971423452249455142271473195998540517250404,
26.8196711402550877454213114709650192615223905192969,
29.9883431174236747426791417966614320438788681941419,
33.1517968976905208712508624699734452654447919661140,
36.3114160002162074157243540350393860813165201842005,
39.4681324675052365879451978080833378877659670320292,
42.6225978013912364748550348312979540188444334802274,
45.7752814645368477533902062078067265814959500124386,
48.9265304891735661983677668174785539924717398947994,
52.0766070453430027942797460418789248768734780634716,
55.2257129449125713935942243278172656890590028901917,
58.3740061015388864367751881504390252017351514189321,
61.5216118730009652737267426593531362663909441035715,
64.6686310537909303683464822148736607945659662871596,
67.8151456196962909255567913755559511651114605854579
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(71)/19, 1), static_cast<RealType>(7.27317519383164895031856942622907655889631967016227L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(71)/19, 4), static_cast<RealType>(17.2524984591704171821624871665497773491959038386104L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(71)/19, 10), static_cast<RealType>(36.3114160002162074157243540350393860813165201842005L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(71)/19, 20), static_cast<RealType>(67.8151456196962909255567913755559511651114605854579L), tolerance);
/*
Table[N[BesselJZero[7001/19, n], 50], {n, 1, 2, 1}]
1 | 381.92201523024489386917204470434842699154031135348
2 | 392.17508657648737502651299853099852567001239217724
Table[N[BesselJZero[7001/19, n], 50], {n, 19, 20, 1}]
19 | 491.67809669154347398205298745712766193052308172472
20 | 496.39435037938252557535375498577989720272298310802
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(7001)/19, 1), static_cast<RealType>(381.92201523024489386917204470434842699154031135348L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(7001)/19, 2), static_cast<RealType>(392.17508657648737502651299853099852567001239217724L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(7001)/19, 20), static_cast<RealType>(496.39435037938252557535375498577989720272298310802L), tolerance);
// Some non-integral tests.
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(3.73684210526315789473684210526315789473684210526315789L), 1), static_cast<RealType>(7.273175193831648950318569426229076558896319670162279791988152000556091140599946365217211157877052381L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(3.73684210526315789473684210526315789473684210526315789L), 20), static_cast<RealType>(67.81514561969629092555679137555595116511146058545787883557679231060644931096494584364894743334132014L), tolerance);
// Some non-integral tests in 'tough' regions.
// Order 219/100: This checks a region just below a critical cutoff.
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(219)/100, 1), static_cast<RealType>(5.37568854370623186731066365697341253761466705063679L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(219)/100, 2), static_cast<RealType>(8.67632060963888122764226633146460596009874991130394L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(219)/100, 20), static_cast<RealType>(65.4517712237598926858973399895944886397152223643028L), tolerance);
// Order 221/100: This checks a region just above a critical cutoff.
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(221)/100, 1), static_cast<RealType>(5.40084731984998184087380740054933778965260387203942L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(221)/100, 2), static_cast<RealType>(8.70347906513509618445695740167369153761310106851599L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(221)/100, 20), static_cast<RealType>(65.4825314862621271716158606625527548818843845600782L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(7001)/19, 1), static_cast<RealType>(381.922015230244893869172044704348426991540311353476L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(7001)/19, 2), static_cast<RealType>(392.175086576487375026512998530998525670012392177242L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(7001)/19, 20), static_cast<RealType>(496.394350379382525575353754985779897202722983108025L), tolerance);
// Zero'th cases.
BOOST_MATH_CHECK_THROW(boost::math::cyl_bessel_j_zero(static_cast<RealType>(0), 0), std::domain_error); // Zero'th zero of J0(x).
BOOST_CHECK(boost::math::cyl_bessel_j_zero(static_cast<RealType>(1), 0) == 0); // Zero'th zero of J1(x).
BOOST_CHECK(boost::math::cyl_bessel_j_zero(static_cast<RealType>(2), 0) == 0); // Zero'th zero of J2(x).
// Negative order cases.
// Table[N[BesselJZero[-39, n], 51], {n, 1, 20, 1}]
// 45.597624026432090522996531982029164361723758769649
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39), 1), static_cast<RealType>(45.597624026432090522996531982029164361723758769649L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39), 2), static_cast<RealType>(50.930599960211455519691708196247756810739999585797L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39), 4), static_cast<RealType>(59.810708207036942166964205243063534405954475825070L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39), 10), static_cast<RealType>(82.490310026657839398140015188318580114553721419436L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39), 15), static_cast<RealType>(99.886172950858129702511715161572827825877395517083L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39), 20), static_cast<RealType>(116.73117751356457774415638043701531989536641098359L), tolerance);
// Table[N[BesselJZero[-39 - (1/3), n], 51], {n, 1, 20, 1}]
// 43.803165820025277290601047312311146608776920513241
// 49.624678304306778749502719837270544976331123155017
RealType v = static_cast<RealType>(-39);
v -= boost::math::constants::third<RealType>();
// BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast<RealType>(43.803165820025277290601047312311146608776920513241L), tolerance);
// BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39) - static_cast<RealType>(1)/3, 1), static_cast<RealType>(43.803165820025277290601047312311146608776920513241L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast<RealType>(49.624678304306778749502719837270544976331123155017L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39) - static_cast<RealType>(0.333333333333333333333333333333333333333333333L), 5), static_cast<RealType>(62.911281619408963609400485687996804820400102193455L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39) - static_cast<RealType>(0.333333333333333333333333333333333333333333333L), 10), static_cast<RealType>(81.705998611506506523381866527389118594062841737382L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast<RealType>(-39) - static_cast<RealType>(0.333333333333333333333333333333333333333333333L), 20), static_cast<RealType>(116.05368337161392034833932554892349580959931408963L), tolerance * 4);
// Table[N[BesselJZero[-1/3, n], 51], {n, 1, 20, 1}]
// 1.86635085887389517154698498025466055044627209492336
// 4.98785323143515872689263163814239463653891121063534
v = - boost::math::constants::third<RealType>();
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast<RealType>(1.86635085887389517154698498025466055044627209492336L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast<RealType>(4.98785323143515872689263163814239463653891121063534L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 5), static_cast<RealType>(14.4037758801360172217813556328092353168458341692115L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 20), static_cast<RealType>(61.5239847181314647255554392599009248210564008120358L), tolerance);
// Table[N[BesselJZero[-3 - (999999/1000000), n], 51], {n, 1, 20, 1}]
// 0.666908567552422764702292353801313970109968787260547
//7.58834489983121936102504707121493271448122800440112
std::cout.precision(2 + std::numeric_limits<RealType>::digits * 3010/10000);
v = -static_cast<RealType>(3);
//std::cout << "v = " << v << std::endl;
RealType d = static_cast<RealType>(999999)/1000000; // Value very near to unity.
//std::cout << "d = " << d << std::endl;
v -= d;
// std::cout << "v = " << v << std::endl; // v = -3.9999989999999999
// 1st is much less accurate.
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast<RealType>(0.666908567552422764702292353801313970109968787260547L), tolerance * 500000);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast<RealType>(7.58834489983121936102504707121493271448122800440112L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 5), static_cast<RealType>(17.6159678964372778134202353240221384945968807948928L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 20), static_cast<RealType>(65.0669968910414433560468307554730940098734494938136L), tolerance);
v = -static_cast<RealType>(1)/81799; // Largish prime, so small value.
// std::cout << "v = " << v << std::endl; // v = -1.22251e-005
// Table[N[BesselJZero[-1/81799, n], 51], {n, 1, 20, 1}]
// 2.40480669570616362235270726259606288441474232101937
//5.52005898213436490056801834487410496538653938730884
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast<RealType>(2.40480669570616362235270726259606288441474232101937L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast<RealType>(5.52005898213436490056801834487410496538653938730884L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 5), static_cast<RealType>(14.9308985160466385806685583210609848822943295303368L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 20), static_cast<RealType>(62.0484499877253314338528593349200129641402661038743L), tolerance);
// Confirm that negative m throws domain_error.
BOOST_MATH_CHECK_THROW(boost::math::cyl_bessel_j_zero(static_cast<RealType>(0), -1), std::domain_error);
// unknown location(0): fatal error in "test_main":
// class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::domain_error> >:
// Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Requested the -1'th zero, but must be > 0 !
// Confirm that a C-style ignore_all policy returns NaN for bad input.
typedef boost::math::policies::policy<
boost::math::policies::domain_error<boost::math::policies::ignore_error>,
boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
boost::math::policies::pole_error<boost::math::policies::ignore_error>,
boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
> ignore_all_policy;
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN()), 1), std::domain_error);
// Check that bad m returns NaN if policy is no throws.
BOOST_CHECK((boost::math::isnan<RealType>)(cyl_bessel_j_zero(std::numeric_limits<RealType>::quiet_NaN(), 1, ignore_all_policy())) );
BOOST_MATH_CHECK_THROW(boost::math::cyl_bessel_j_zero(static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN()), -1), std::domain_error);
}
else
{ // real_concept bad m returns zero.
//std::cout << boost::math::cyl_bessel_j_zero(static_cast<RealType>(0), -1, ignore_all_policy()) << std::endl; // 0 for real_concept.
BOOST_CHECK_EQUAL(boost::math::cyl_bessel_j_zero(static_cast<RealType>(0), -1, ignore_all_policy() ), 0);
}
if (std::numeric_limits<RealType>::has_infinity)
{
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(std::numeric_limits<RealType>::infinity(), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(std::numeric_limits<RealType>::infinity(), 1), std::domain_error);
// Check that NaN is returned if error ignored.
BOOST_CHECK((boost::math::isnan<RealType>)(cyl_bessel_j_zero(std::numeric_limits<RealType>::infinity(), 1, ignore_all_policy())) );
}
// Tests of cyc_neumann zero function (BesselYZero in Wolfram) for spot values.
/*
Table[N[BesselYZero[0, n], 50], {n, 1, 5, 1}]
n |
1 | 0.89357696627916752158488710205833824122514686193001
2 | 3.9576784193148578683756771869174012814186037655636
3 | 7.0860510603017726976236245968203524689715103811778
4 | 10.222345043496417018992042276342187125994059613181
5 | 13.361097473872763478267694585713786426579135174880
Table[N[BesselYZero[0, n], 50], {n, 1, 5, 1}]
n |
1 | 0.89357696627916752158488710205833824122514686193001
2 | 3.9576784193148578683756771869174012814186037655636
3 | 7.0860510603017726976236245968203524689715103811778
4 | 10.222345043496417018992042276342187125994059613181
5 | 13.361097473872763478267694585713786426579135174880
So K == Y
Table[N[BesselYZero[1, n], 50], {n, 1, 5, 1}]
n |
1 | 2.1971413260310170351490335626989662730530183315003
2 | 5.4296810407941351327720051908525841965837574760291
3 | 8.5960058683311689264296061801639678511029215669749
4 | 11.749154830839881243399421939922350714301165983279
5 | 14.897442128336725378844819156429870879807150630875
Table[N[BesselYZero[2, n], 50], {n, 1, 5, 1}]
n |
1 | 3.3842417671495934727014260185379031127323883259329
2 | 6.7938075132682675382911671098369487124493222183854
3 | 10.023477979360037978505391792081418280789658279097
4 | 13.209986710206416382780863125329852185107588501072
5 | 16.378966558947456561726714466123708444627678549687
*/
// Some simple integer values.
using boost::math::cyl_neumann_zero;
// Bad rank m.
BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast<RealType>(0), 0), std::domain_error); //
BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast<RealType>(0), -1), std::domain_error);
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
BOOST_MATH_CHECK_THROW(cyl_neumann_zero(std::numeric_limits<RealType>::quiet_NaN(), 1), std::domain_error);
BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast<RealType>(0), -1), std::domain_error);
}
if (std::numeric_limits<RealType>::has_infinity)
{
BOOST_MATH_CHECK_THROW(cyl_neumann_zero(std::numeric_limits<RealType>::infinity(), 2), std::domain_error);
BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast<RealType>(0), -1), std::domain_error);
}
// else no infinity tests.
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(0), 1), static_cast<RealType>(0.89357696627916752158488710205833824122514686193001L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1), 2), static_cast<RealType>(5.4296810407941351327720051908525841965837574760291L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(2), 3), static_cast<RealType>(10.023477979360037978505391792081418280789658279097L), tolerance);
/*
Table[N[BesselYZero[3, n], 50], {n, 1, 5, 1}]
1 | 4.5270246611496438503700268671036276386651555486109
2 | 8.0975537628604907044022139901128042290432231369075
3 | 11.396466739595866739252048190629504945984969192535
4 | 14.623077742393873174076722507725200649352970569915
5 | 17.818455232945520262553239064736739443380352162752
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(3), 1), static_cast<RealType>(4.5270246611496438503700268671036276386651555486109L), tolerance * 2);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(3), 2), static_cast<RealType>(8.0975537628604907044022139901128042290432231369075L), tolerance * 2);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(3), 3), static_cast<RealType>(11.396466739595866739252048190629504945984969192535L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(3), 4), static_cast<RealType>(14.623077742393873174076722507725200649352970569915L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(3), 5), static_cast<RealType>(17.818455232945520262553239064736739443380352162752L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 1), static_cast<RealType>(4.5270246611496438503700268671036276386651555486109L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 2), static_cast<RealType>(8.0975537628604907044022139901128042290432231369075L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 3), static_cast<RealType>(11.396466739595866739252048190629504945984969192535L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 4), static_cast<RealType>(14.623077742393873174076722507725200649352970569915L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 5), static_cast<RealType>(17.818455232945520262553239064736739443380352162752L), tolerance);
/*
Table[N[BesselYZero[-5/2, n], 50], {n, 1, 5, 1}]
n | y_(-2.5000000000000000000000000000000000000000000000000, n)
1 | 5.7634591968945497914064666539527350764090876841674
2 | 9.0950113304763551563376983279896952524009293663831
3 | 12.322940970566582051969567925329726061189423834915
4 | 5.7634591968945497914064666539527350764090876841674
5 | 9.0950113304763551563376983279896952524009293663831
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2.5), 1), static_cast<RealType>(5.7634591968945497914064666539527350764090876841674L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2.5), 2), static_cast<RealType>(9.0950113304763551563376983279896952524009293663831L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2.5), 3), static_cast<RealType>(12.322940970566582051969567925329726061189423834915L), tolerance);
//BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2.5), 4), static_cast<RealType>(5.7634591968945497914064666539527350764090876841674L), tolerance);
//BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2.5), 5), static_cast<RealType>(9.0950113304763551563376983279896952524009293663831L), tolerance);
{ // Repeat rest using multiple zeros version.
std::vector<RealType> zeros;
cyl_neumann_zero(static_cast<RealType>(0.0), 1, 3, std::back_inserter(zeros) );
BOOST_CHECK_CLOSE_FRACTION(zeros[0], static_cast<RealType>(0.89357696627916752158488710205833824122514686193001L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(zeros[1], static_cast<RealType>(3.9576784193148578683756771869174012814186037655636L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(zeros[2], static_cast<RealType>(7.0860510603017726976236245968203524689715103811778L), tolerance);
}
// Order 0: Something always tends to go wrong at zero.
/* Order 219/100: This checks accuracy in a region just below a critical cutoff.
Table[N[BesselKZero[219/100, n], 50], {n, 1, 20, 4}]
1 | 3.6039149425338727979151181355741147312162055042157
5 | 16.655399111666833825247894251535326778980614938275
9 | 29.280564448169163756478439692311605757712873534942
13 | 41.870269811145814760551599481942750124112093564643
17 | 54.449180021209532654553613813754733514317929678038
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(219)/100, 1), static_cast<RealType>(3.6039149425338727979151181355741147312162055042157L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(219)/100, 5), static_cast<RealType>(16.655399111666833825247894251535326778980614938275L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(219)/100, 17), static_cast<RealType>(54.449180021209532654553613813754733514317929678038L), tolerance);
/* Order 221/100: This checks a region just above a critical cutoff.
Table[N[BesselYZero[220/100, n], 50], {n, 1, 20, 5}]
1 | 3.6154383428745996706772556069431792744372398748425
6 | 19.833435100254138641131431268153987585842088078470
11 | 35.592602956438811360473753622212346081080817891225
16 | 51.320322762482062633162699745957897178885350674038
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(220)/100, 1), static_cast<RealType>(3.6154383428745996706772556069431792744372398748425L), 2 * tolerance);
// Note * 2 tolerance needed - using cpp_dec_float_50 it computes exactly, probably because of extra guard digits in multiprecision decimal version.
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(220)/100, 6), static_cast<RealType>(19.833435100254138641131431268153987585842088078470L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(220)/100, 11), static_cast<RealType>(35.592602956438811360473753622212346081080817891225L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(220)/100, 16), static_cast<RealType>(51.320322762482062633162699745957897178885350674038L), tolerance);
/* Order 1/1000: A small order.
Table[N[BesselYZero[1/1000, n], 50], {n, 1, 20, 5}]
1 | 0.89502371604431360670577815537297733265776195646969
6 | 16.502492490954716850993456703662137628148182892787
11 | 32.206774708309182755790609144739319753463907110990
16 | 47.913467031941494147962476920863688176374357572509
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1)/1000, 1), static_cast<RealType>(0.89502371604431360670577815537297733265776195646969L), 2 * tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1)/1000, 6), static_cast<RealType>(16.5024924909547168509934567036621376281481828927870L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1)/1000, 11), static_cast<RealType>(32.206774708309182755790609144739319753463907110990L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1)/1000, 16), static_cast<RealType>(47.913467031941494147962476920863688176374357572509L), tolerance);
/* Order 71/19: Merely an intermediate order.
Table[N[BesselYZero[71/19, n], 50], {n, 1, 20, 5}]
1 | 5.3527167881149432911848659069476821793319749146616
6 | 22.051823727778538215953091664153117627848857279151
11 | 37.890091170552491176745048499809370107665221628364
16 | 53.651270581421816017744203789836444968181687858095
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(71)/19, 1), static_cast<RealType>(5.3527167881149432911848659069476821793319749146616L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(71)/19, 6), static_cast<RealType>(22.051823727778538215953091664153117627848857279151L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(71)/19, 11), static_cast<RealType>(37.890091170552491176745048499809370107665221628364L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(71)/19, 16), static_cast<RealType>(53.651270581421816017744203789836444968181687858095L), tolerance);
/* Order 7001/19: A medium-large order, small enough to retain moderate efficiency of calculation.
Table[N[BesselYZero[7001/19, n], 50], {n, 1}]
1 | 375.18866334770357669101711932706658671250621098115
Table[N[BesselYZero[7001/19, n], 50], {n, 2}]
Standard computation time exceeded :-(
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(7001)/19, 1), static_cast<RealType>(375.18866334770357669101711932706658671250621098115L), tolerance);
/* A high zero such as the 1000th zero for a modest order such as 71/19.
Table[N[BesselYZero[71/19, n], 50], {n, 1000}]
Standard computation time exceeded :-(
*/
/*
Test Negative orders cyl_neumann.
Table[N[BesselYZero[-1, n], 50], {n, 1, 10, 1}]
1 | 2.1971413260310170351490335626989662730530183315003
2 | 5.4296810407941351327720051908525841965837574760291
3 | 8.5960058683311689264296061801639678511029215669749
4 | 11.749154830839881243399421939922350714301165983279
5 | 14.897442128336725378844819156429870879807150630875
6 | 18.043402276727855564304555507889508902163088324834
7 | 21.188068934142213016142481528685423196935024604904
8 | 24.331942571356912035992944051850129651414333340303
9 | 27.475294980449223512212285525410668235700897307021
10 | 30.618286491641114715761625696447448310277939570868
11 | 33.761017796109325692471759911249650993879821495802
16 | 49.472505679924095824128003887609267273294894411716
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-1), 1), static_cast<RealType>(2.1971413260310170351490335626989662730530183315003L), tolerance * 3);
// Note this test passes at tolerance for float, double and long double, but fails for real_concept if tolerance <= 2.
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-1), 6), static_cast<RealType>(18.043402276727855564304555507889508902163088324834L), tolerance * 3);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-1), 11), static_cast<RealType>(33.761017796109325692471759911249650993879821495802L), tolerance * 3);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-1), 16), static_cast<RealType>(49.472505679924095824128003887609267273294894411716L), tolerance * 3);
/*
Table[N[BesselYZero[-2, n], 50], {n, 1, 20, 5}]
1 | 3.3842417671495934727014260185379031127323883259329
6 | 19.539039990286384411511740683423888947393156497603
11 | 35.289793869635804143323234828826075805683602368473
16 | 51.014128749483902310217774804582826908060740157564
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2), 1), static_cast<RealType>(3.3842417671495934727014260185379031127323883259329L), tolerance * 3);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2), 6), static_cast<RealType>(19.539039990286384411511740683423888947393156497603L), tolerance * 3);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2), 11), static_cast<RealType>(35.289793869635804143323234828826075805683602368473L), tolerance * 3);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-2), 16), static_cast<RealType>(51.014128749483902310217774804582826908060740157564L), tolerance * 3);
/*
Table[N[BesselYZero[-3, n], 51], {n, 1, 7, 1}]
1 | 4.52702466114964385037002686710362763866515554861094
2 | 8.09755376286049070440221399011280422904322313690750
3 | 11.3964667395958667392520481906295049459849691925349
4 | 14.6230777423938731740767225077252006493529705699150
5 | 17.8184552329455202625532390647367394433803521627517
6 | 20.9972847541877606834525058939528641630713169437070
7 | 24.1662357585818282287385597668220226288453739040042
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 1), static_cast<RealType>(4.52702466114964385037002686710362763866515554861094L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 2), static_cast<RealType>(8.09755376286049070440221399011280422904322313690750L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3), 4), static_cast<RealType>(14.6230777423938731740767225077252006493529705699150L), tolerance);
/* Table[N[BesselKZero[-39, n], 51], {n, 1, 20, 5}]
1 | 42.2362394762664681287397356668342141701037684436723
6 | 65.8250353430045981408288669790173009159561533403819
11 | 84.2674082411341814641248554679382420802125973458922
16 | 101.589776978258493441843447810649346266014624868410
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39), 1), static_cast<RealType>(42.2362394762664681287397356668342141701037684436723L), tolerance );
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39), 6), static_cast<RealType>(65.8250353430045981408288669790173009159561533403819L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39), 11), static_cast<RealType>(84.2674082411341814641248554679382420802125973458922L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39), 16), static_cast<RealType>(101.589776978258493441843447810649346266014624868410L), tolerance);
/* Table[N[BesselKZero[-39 -(1/3), n], 51], {n, 1, 20, 5}]
1 | 39.3336965099558453809241429692683050137281997313679
6 | 64.9038181444904768984884565999608291433823953030822
11 | 83.4922341795560713832607574604255239776551554961143
16 | 100.878386349724826125265571457142254077564666532665
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39) - static_cast<RealType>(1)/3, 1), static_cast<RealType>(39.3336965099558453809241429692683050137281997313679L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39) - static_cast<RealType>(1)/3, 6), static_cast<RealType>(64.9038181444904768984884565999608291433823953030822L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39) - static_cast<RealType>(1)/3, 11), static_cast<RealType>(83.4922341795560713832607574604255239776551554961143L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-39) - static_cast<RealType>(1)/3, 16), static_cast<RealType>(100.878386349724826125265571457142254077564666532665L), tolerance * 4);
/* Table[N[BesselKZero[-(1/3), n], 51], {n, 1, 20, 5}]
n |
1 | 0.364442931311036254896373762996743259918847602789703
6 | 15.9741013584105984633772025789145590038676373673203
11 | 31.6799168750213003020847708007848147516190373648194
16 | 47.3871543280673235432396563497681616285970326011211
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/3, 1), static_cast<RealType>(0.364442931311036254896373762996743259918847602789703L), tolerance * 10);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/3, 6), static_cast<RealType>(15.9741013584105984633772025789145590038676373673203L), tolerance * 10);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/3, 11), static_cast<RealType>(31.6799168750213003020847708007848147516190373648194L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/3, 16), static_cast<RealType>(47.3871543280673235432396563497681616285970326011211L), tolerance * 4);
/* Table[N[BesselKZero[-3 -(9999/10000), n], 51], {n, 1, 20, 5}]
1 | 5.64546089250283694562642537496601708928630550185069
2 | 9.36184180108088288881787970896747209376324330610979
3 | 12.7303431758275183078115963473808796340618061355885
4 | 15.9998152121877557837972245675029531998475502716021
6 | 9.36184180108088288881787970896747209376324330610979
11 | 25.6104419106589739931633042959774157385787405502820
16 | 41.4361281441868132581487460354904567452973524446193
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 1), static_cast<RealType>(5.64546089250283694562642537496601708928630550185069L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 2), static_cast<RealType>(9.36184180108088288881787970896747209376324330610979L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 3), static_cast<RealType>(12.7303431758275183078115963473808796340618061355885L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 4), static_cast<RealType>(15.9998152121877557837972245675029531998475502716021L), tolerance * 4);
/* Table[N[BesselYZero[-3 -(9999/10000), n], 51], {n, 1, 7, 1}]
1 | 5.64546089250283694562642537496601708928630550185069
2 | 9.36184180108088288881787970896747209376324330610979
3 | 12.7303431758275183078115963473808796340618061355885
4 | 15.9998152121877557837972245675029531998475502716021
// but 5 is same as 1!! Acknowledged as fault Wolfram [TS 6475] 26 Feb 13.
5 | 5.64546089250283694562642537496601708928630550184982
6 | 9.36184180108088288881787970896747209376324330610979
7 | 12.7303431758275183078115963473808796340618061355885
In[26]:= FindRoot[BesselY[-3 -9999/10000, r] == 0, {r, 3}] for r = 2,3, 4, 5 = {r->5.64546}
In[26]:= FindRoot[BesselY[-3 -9999/10000, r] == 0, {r, 19}] = 19.2246
So no very accurate reference value for these.
Calculated using cpp_dec_float_50
5.6454608925028369456264253749660170892863055018498
9.3618418010808828888178797089674720937632433061099
12.730343175827518307811596347380879634061806135589
15.999815212187755783797224567502953199847550271602
19.224610865671563344572152795434688888375602299773
22.424988389021059116212186912990863561607855849204
25.610441910658973993163304295977415738578740550282
28.786066313968546073981640755202085944374967166411
31.954857624676521867923579695253822854717613513587
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 1), static_cast<RealType>(5.64546089250283694562642537496601708928630550185069L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 2), static_cast<RealType>(9.36184180108088288881787970896747209376324330610979L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 3), static_cast<RealType>(12.7303431758275183078115963473808796340618061355885L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 4), static_cast<RealType>(15.9998152121877557837972245675029531998475502716021L), tolerance * 4);
//
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 5), static_cast<RealType>(19.224610865671563344572152795434688888375602299773L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 6), static_cast<RealType>(22.424988389021059116212186912990863561607855849204L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 7), static_cast<RealType>(25.610441910658973993163304295977415738578740550282L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 8), static_cast<RealType>(28.786066313968546073981640755202085944374967166411L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000, 9), static_cast<RealType>(31.954857624676521867923579695253822854717613513587L), tolerance * 4);
// Plot[BesselYZero[-7 - v, 1], {v, 0, 1}] shows discontinuity at the mid-point between integers.
/* Table[N[BesselYZero[-7 - (4999/10000), n], 51], {n, 1, 4, 1}]
1 | 3.59209698655443348407622952525352410710983745802573
2 | 11.6573245781899449398248761667833391837824916603434
3 | 15.4315262542144355217979771618575628291362029097236
4 | 18.9232143766706670333395285892576635207736306576135
*/
/* Table[N[BesselYZero[-7 - (5001/10000), n], 51], {n, 1, 4, 1}]
1 | 11.6567397956147934678808863468662427054245897492445
2 | 15.4310521624769624067699131497395566368341140531722
3 | 18.9227840182910629037411848072684247564491740961847
4 | 22.2951449444372591060253508661432751300205474374696
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(4999)/10000, 1), static_cast<RealType>(3.59209698655443348407622952525352410710983745802573L), tolerance * 2000);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(4999)/10000, 2), static_cast<RealType>(11.6573245781899449398248761667833391837824916603434L), tolerance * 100);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(4999)/10000, 3), static_cast<RealType>(15.4315262542144355217979771618575628291362029097236L), tolerance * 100);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(4999)/10000, 4), static_cast<RealType>(18.9232143766706670333395285892576635207736306576135L), tolerance * 100);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(5001)/10000, 1), static_cast<RealType>(11.6567397956147934678808863468662427054245897492445L), tolerance * 100);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(5001)/10000, 2), static_cast<RealType>(15.4310521624769624067699131497395566368341140531722L), tolerance * 100);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(5001)/10000, 3), static_cast<RealType>(18.9227840182910629037411848072684247564491740961847L), tolerance * 100);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) -static_cast<RealType>(5001)/10000, 4), static_cast<RealType>(22.2951449444372591060253508661432751300205474374696L), tolerance * 100);
//BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-(static_cast<RealType>(-3)-static_cast<RealType>(99)/100), 5),
// cyl_neumann_zero(+(static_cast<RealType>(-3)-static_cast<RealType>(99)/100), 5), tolerance * 100);
{
long double x = 1.L;
BOOST_CHECK_CLOSE_FRACTION(
cyl_neumann_zero(-(static_cast<RealType>(x)), 5),
cyl_neumann_zero(+(static_cast<RealType>(x)), 5), tolerance * 100);
}
{
long double x = 2.L;
BOOST_CHECK_CLOSE_FRACTION(
cyl_neumann_zero(-(static_cast<RealType>(x)), 5),
cyl_neumann_zero(+(static_cast<RealType>(x)), 5), tolerance * 100);
}
{
long double x = 3.L;
BOOST_CHECK_CLOSE_FRACTION(
cyl_neumann_zero(-(static_cast<RealType>(x)), 5),
cyl_neumann_zero(+(static_cast<RealType>(x)), 5), tolerance * 100);
}
// These are very close but not exactly same.
//{
// RealType x = static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000;
// BOOST_CHECK_CLOSE_FRACTION(
// cyl_neumann_zero(-(static_cast<RealType>(x)), 5),
// cyl_neumann_zero(+(static_cast<RealType>(x)), 5), tolerance * 100);
// // 19.2242889 and 19.2246113
//}
//{
// RealType x = static_cast<RealType>(-3) -static_cast<RealType>(9999)/10000;
// BOOST_CHECK_CLOSE_FRACTION(
// cyl_neumann_zero(-(static_cast<RealType>(x)), 6),
// cyl_neumann_zero(+(static_cast<RealType>(x)), 6), tolerance * 100);
// // 22.4246693 and 22.4249878
//}
// 2.5 18.6890354 17.1033592
/*Table[N[BesselYZero[-1/81799, n], 51], {n, 1, 10, 5}]
1 | 0.893559276290122922836047849416713592133322804889757
2 | 3.95765935645507004204986415533750122885237402118726
3 | 7.08603190350579828577279552434514387474680226004173
4 | 10.2223258629823064789904339889550588869985272176335
5 | 13.3610782840659145864973521693322670264135672594988
3 | 7.08603190350579828577279552434514387474680226004173
5 | 13.3610782840659145864973521693322670264135672594988
6 | 16.5009032471619898684110089652474861084220781491575
7 | 19.6412905039556082160052482410981245043314155416354
9 | 25.9229384536173175152381652048590136247796591153244
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 1), static_cast<RealType>(0.893559276290122922836047849416713592133322804889757L), tolerance * 4);
// Doesn't converge!
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 2), static_cast<RealType>(3.95765935645507004204986415533750122885237402118726L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 3), static_cast<RealType>(7.08603190350579828577279552434514387474680226004173L), tolerance * 4);
/* try positive x
Table[N[BesselYZero[1/81799, n], 51], {n, 1, 5, 1}]
1 | 0.893594656187326273432267210617481926490785928764963
2 | 3.95769748213950546166537901626409026826595687994956
3 | 7.08607021707716361104064671367526817399129653285580
4 | 10.2223642239960815612515914411615233651316361060338
5 | 13.3611166636685056799674772287389749065996094266976
*/
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1)/81799, 2), static_cast<RealType>(3.95769748213950546166537901626409026826595687994956L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(1)/81799, 3), static_cast<RealType>(7.08607021707716361104064671367526817399129653285580L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 4), static_cast<RealType>(10.2223258629823064789904339889550588869985272176335L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 5), static_cast<RealType>(13.3610782840659145864973521693322670264135672594988L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 6), static_cast<RealType>(16.5009032471619898684110089652474861084220781491575L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast<RealType>(1)/81799, 9), static_cast<RealType>(25.9229384536173175152381652048590136247796591153244L), tolerance * 4);
BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast<RealType>(-7) - static_cast<RealType>(1)/3, 1), static_cast<RealType>(7.3352783956690540155848592759652828459644819344081L), tolerance * 1000);
// Test Data for airy_ai_zero and airy_bi_zero functions.
using boost::math::airy_ai_zero; //
using boost::math::isnan;
BOOST_MATH_CHECK_THROW(airy_ai_zero<RealType>(0), std::domain_error);
if (std::numeric_limits<RealType>::has_quiet_NaN)
{ // If ignore errors, return NaN.
BOOST_CHECK((boost::math::isnan)(airy_ai_zero<RealType>(0, ignore_all_policy())));
BOOST_CHECK((boost::math::isnan)(airy_ai_zero<RealType>((std::numeric_limits<unsigned>::min)() , ignore_all_policy())));
// Can't abuse with NaN as won't compile.
//BOOST_MATH_CHECK_THROW(airy_ai_zero<RealType>(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
}
else
{ // real_concept NaN not available, so return zero.
BOOST_CHECK_EQUAL(airy_ai_zero<RealType>(0, ignore_all_policy()), 0);
// BOOST_CHECK_EQUAL(airy_ai_zero<RealType>(-1), 0); // warning C4245: 'argument' : conversion from 'int' to 'unsigned int', signed/unsigned mismatch
}
BOOST_MATH_CHECK_THROW(airy_ai_zero<RealType>(-1), std::domain_error);
if (std::numeric_limits<RealType>::digits && (std::numeric_limits<RealType>::digits < 100))
{
// Limited precision test value:
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>((std::numeric_limits<std::int32_t>::max)()), -static_cast<RealType>(4678579.33301973093739L), tolerance);
}
// Can't abuse with infinity because won't compile - no conversion.
//if (std::numeric_limits<RealType>::has_infinity)
//{
// BOOST_CHECK(isnan(airy_bi_zero<RealType>(-1)) );
//}
// WolframAlpha Table[N[AiryAiZero[n], 51], {n, 1, 20, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1), static_cast<RealType>(-2.33810741045976703848919725244673544063854014567239L), tolerance * 2 * tolerance_tgamma_extra);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(2), static_cast<RealType>(-4.08794944413097061663698870145739106022476469910853L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(3), static_cast<RealType>(-5.52055982809555105912985551293129357379721428061753L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(4), static_cast<RealType>(-6.78670809007175899878024638449617696605388247739349L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(5), static_cast<RealType>(-7.94413358712085312313828055579826853214067439697221L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(6), static_cast<RealType>(-9.02265085334098038015819083988008925652467753515608L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(7), static_cast<RealType>(-10.0401743415580859305945567373625180940429025691058L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(8), static_cast<RealType>(-11.0085243037332628932354396495901510167308253815040L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(9), static_cast<RealType>(-11.9360155632362625170063649029305843155778862321198L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(10), static_cast<RealType>(-12.8287767528657572004067294072418244773864155995734L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(11), static_cast<RealType>(-13.6914890352107179282956967794669205416653698092008L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(12), static_cast<RealType>(-14.5278299517753349820739814429958933787141648698348L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(13), static_cast<RealType>(-15.3407551359779968571462085134814867051175833202480L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(14), static_cast<RealType>(-16.1326851569457714393459804472025217905182723970763L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(15), static_cast<RealType>(-16.9056339974299426270352387706114765990900510950317L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(16), static_cast<RealType>(-17.6613001056970575092536503040180559521532186681200L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(17), static_cast<RealType>(-18.4011325992071154158613979295043367545938146060201L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(18), static_cast<RealType>(-19.1263804742469521441241486897324946890754583847531L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(19), static_cast<RealType>(-19.8381298917214997009475636160114041983356824945389L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(20), static_cast<RealType>(-20.5373329076775663599826814113081017453042180147375L), tolerance);
// Table[N[AiryAiZero[n], 51], {n, 1000, 1001, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1000), static_cast<RealType>(-281.031519612521552835336363963709689055717463965420L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1001), static_cast<RealType>(-281.218889579130068414512015874511112547569713693446L), tolerance);
// Table[N[AiryAiZero[n], 51], {n, 1000000, 1000001, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1000000), static_cast<RealType>(-28107.8319793795834876064419863203282898723750036048L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1000001), static_cast<RealType>(-28107.8507179357979542838020057465277368471496446555L), tolerance);
// Table[N[AiryAiZero[n], 51], {n, 1000000000, 1000000001, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1000000000), static_cast<RealType>(-2.81078366593344513918947921096193426320298300481145E+6L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero<RealType>(1000000001), static_cast<RealType>(-2.81078366780730091663459728526906320267920607427246E+6L), tolerance);
// Test Data for airy_bi
using boost::math::airy_bi_zero;
BOOST_MATH_CHECK_THROW(airy_bi_zero<RealType>(0), std::domain_error);
if (std::numeric_limits<RealType>::has_quiet_NaN)
{ // return NaN.
BOOST_CHECK((boost::math::isnan)(airy_bi_zero<RealType>(0, ignore_all_policy())));
BOOST_CHECK((boost::math::isnan)(airy_bi_zero<RealType>((std::numeric_limits<unsigned>::min)() , ignore_all_policy())));
// Can't abuse with NaN as won't compile.
// BOOST_MATH_CHECK_THROW(airy_bi_zero<RealType>(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
// cannot convert parameter 1 from 'boost::math::concepts::real_concept' to 'unsigned int'.
}
else
{ // real_concept NaN not available, so return zero.
BOOST_CHECK_EQUAL(airy_bi_zero<RealType>(0, ignore_all_policy()), 0);
// BOOST_CHECK_EQUAL(airy_bi_zero<RealType>(-1), 0);
// warning C4245: 'argument' : conversion from 'int' to 'unsigned int', signed/unsigned mismatch.
// If ignore the warning, interpreted as max unsigned:
// check airy_bi_zero<RealType>(-1) == 0 has failed [-7.42678e+006 != 0]
}
BOOST_MATH_CHECK_THROW(airy_bi_zero<RealType>(-1), std::domain_error);
if (std::numeric_limits<RealType>::digits && (std::numeric_limits<RealType>::digits < 100))
{
// Limited precision test value:
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>((std::numeric_limits<std::int32_t>::max)()), -static_cast<RealType>(4678579.33229351984573L), tolerance * 300);
}
// Can't abuse with infinity because won't compile - no conversion.
//if (std::numeric_limits<RealType>::has_infinity)
//{
// BOOST_CHECK(isnan(airy_bi_zero<RealType>(std::numeric_limits<RealType>::infinity)) );
//}
// Table[N[AiryBiZero[n], 51], {n, 1, 20, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1), static_cast<RealType>(-1.17371322270912792491997996247390210454364638917570L), tolerance * 4 * tolerance_tgamma_extra);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(2), static_cast<RealType>(-3.27109330283635271568022824016641380630093596910028L), tolerance * tolerance_tgamma_extra);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(3), static_cast<RealType>(-4.83073784166201593266770933990517817696614261732301L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(4), static_cast<RealType>(-6.16985212831025125983336452055593667996554943427563L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(5), static_cast<RealType>(-7.37676207936776371359995933044254122209152229939710L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(6), static_cast<RealType>(-8.49194884650938801344803949280977672860508755505546L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(7), static_cast<RealType>(-9.53819437934623888663298854515601962083907207638247L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(8), static_cast<RealType>(-10.5299135067053579244005555984531479995295775946214L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(9), static_cast<RealType>(-11.4769535512787794379234649247328196719482538148877L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(10), static_cast<RealType>(-12.3864171385827387455619015028632809482597983846856L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(11), static_cast<RealType>(-13.2636395229418055541107433243954907752411519609813L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(12), static_cast<RealType>(-14.1127568090686577915873097822240184716840428285509L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(13), static_cast<RealType>(-14.9370574121541640402032143104909046396121763517782L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(14), static_cast<RealType>(-15.7392103511904827708949784797481833807180162767841L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(15), static_cast<RealType>(-16.5214195506343790539179499652105457167110310370581L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(16), static_cast<RealType>(-17.2855316245812425329342366922535392425279753602710L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(17), static_cast<RealType>(-18.0331132872250015721711125433391920008087291416406L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(18), static_cast<RealType>(-18.7655082844800810413429789236105128440267189551421L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(19), static_cast<RealType>(-19.4838801329892340136659986592413575122062977793610L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(20), static_cast<RealType>(-20.1892447853962024202253232258275360764649783583934L), tolerance);
// Table[N[AiryBiZero[n], 51], {n, 1000, 1001, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1000), static_cast<RealType>(-280.937811203415240157883427412260300146245056425646L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1001), static_cast<RealType>(-281.125212400956392021977771104562061554648675044114L), tolerance);
// Table[N[AiryBiZero[n], 51], {n, 1000000, 1000001, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1000000), static_cast<RealType>(-28107.8226100991339342855024130953986989636667226163L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1000001), static_cast<RealType>(-28107.8413486584714939255315213519230566014624895515L), tolerance);
//Table[N[AiryBiZero[n], 51], {n, 1000000000, 1000000001, 1}]
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1000000000), static_cast<RealType>(-2.81078366499651725023268820158218492845371527054171E+6L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero<RealType>(1000000001), static_cast<RealType>(-2.81078366687037302799011557215619265502627118526716E+6L), tolerance);
// Check the multi-root versions.
{
unsigned int n_roots = 1U;
std::vector<RealType> roots;
boost::math::airy_ai_zero<RealType>(2U, n_roots, std::back_inserter(roots));
BOOST_CHECK_CLOSE_FRACTION(roots[0], static_cast<RealType>(-4.08794944413097061663698870145739106022476469910853L), tolerance);
}
{
unsigned int n_roots = 1U;
std::vector<RealType> roots;
boost::math::airy_bi_zero<RealType>(2U, n_roots, std::back_inserter(roots));
BOOST_CHECK_CLOSE_FRACTION(roots[0], static_cast<RealType>(-3.27109330283635271568022824016641380630093596910028L), tolerance * tolerance_tgamma_extra);
}
} // template <class RealType> void test_spots(RealType)
#include <boost/multiprecision/cpp_dec_float.hpp>
BOOST_AUTO_TEST_CASE(test_main)
{
test_bessel_zeros(0.1F);
test_bessel_zeros(0.1);
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_bessel_zeros(0.1L);
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_bessel_zeros(boost::math::concepts::real_concept(0.1));
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
}
|