1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
// (C) Copyright John Maddock 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/special_functions/ulp.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
#include <iostream>
#include <iomanip>
template <class T>
void test_value(const T& val, const char* name)
{
using namespace boost::math;
using std::fabs;
T next = float_next(val);
T prev = float_prior(val);
if((boost::math::isinf)(next))
{
BOOST_CHECK_EQUAL(relative_difference(val, next), tools::max_value<T>());
return;
}
if((boost::math::isinf)(prev))
{
BOOST_CHECK_EQUAL(relative_difference(val, prev), tools::max_value<T>());
return;
}
BOOST_CHECK_EQUAL(relative_difference(val, next), relative_difference(next, val));
BOOST_CHECK_EQUAL(epsilon_difference(val, next), epsilon_difference(next, val));
BOOST_CHECK_LE(relative_difference(val, next), boost::math::tools::epsilon<T>());
BOOST_CHECK_LE(epsilon_difference(val, next), T(1));
if((fabs(val) > tools::min_value<T>()) || (fabs(next) > tools::min_value<T>()))
{
BOOST_CHECK_GT(relative_difference(val, next), T(0));
BOOST_CHECK_GT(epsilon_difference(val, next), T(0));
}
else
{
BOOST_CHECK_EQUAL(relative_difference(val, next), T(0));
BOOST_CHECK_EQUAL(epsilon_difference(val, next), T(0));
}
BOOST_CHECK_EQUAL(relative_difference(val, prev), relative_difference(prev, val));
BOOST_CHECK_EQUAL(epsilon_difference(val, prev), epsilon_difference(prev, val));
if((fabs(val) > tools::min_value<T>()) || (fabs(prev) > tools::min_value<T>()))
{
BOOST_CHECK_GT(relative_difference(val, prev), T(0));
BOOST_CHECK_GT(epsilon_difference(val, prev), T(0));
}
else
{
BOOST_CHECK_EQUAL(relative_difference(val, prev), T(0));
BOOST_CHECK_EQUAL(epsilon_difference(val, prev), T(0));
}
}
template <class T>
void test_values(const T& val, const char* name)
{
static const T a = static_cast<T>(1.3456724e22);
static const T b = static_cast<T>(1.3456724e-22);
static const T z = 0;
static const T one = 1;
static const T two = 2;
std::cout << "Testing type " << name << std::endl;
T den = (std::numeric_limits<T>::min)() / 4;
if(den != 0)
{
std::cout << "Denormals are active\n";
}
else
{
std::cout << "Denormals are flushed to zero.\n";
}
test_value(a, name);
test_value(-a, name);
test_value(b, name);
test_value(-b, name);
test_value(boost::math::tools::epsilon<T>(), name);
test_value(-boost::math::tools::epsilon<T>(), name);
test_value(boost::math::tools::min_value<T>(), name);
test_value(-boost::math::tools::min_value<T>(), name);
if (std::numeric_limits<T>::is_specialized && boost::math::detail::has_denorm_now<T>() && ((std::numeric_limits<T>::min)() / 2 != 0))
{
test_value(z, name);
test_value(-z, name);
}
test_value(one, name);
test_value(-one, name);
test_value(two, name);
test_value(-two, name);
static const int primes[] = {
11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
};
for(unsigned i = 0; i < sizeof(primes) / sizeof(primes[0]); ++i)
{
for(unsigned j = 0; j < sizeof(primes) / sizeof(primes[0]); ++j)
{
test_value(T(primes[i]) / T(primes[j]), name);
test_value(-T(primes[i]) / T(primes[j]), name);
}
}
using namespace boost::math;
BOOST_CHECK_EQUAL(relative_difference(tools::min_value<T>(), -tools::min_value<T>()), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(tools::min_value<T>(), -tools::min_value<T>()), tools::max_value<T>());
if(std::numeric_limits<T>::has_infinity)
{
BOOST_CHECK_EQUAL(relative_difference(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity()), T(0));
BOOST_CHECK_EQUAL(epsilon_difference(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity()), T(0));
BOOST_CHECK_EQUAL(relative_difference(std::numeric_limits<T>::infinity(), tools::max_value<T>()), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(std::numeric_limits<T>::infinity(), tools::max_value<T>()), tools::max_value<T>());
BOOST_CHECK_EQUAL(relative_difference(std::numeric_limits<T>::infinity(), tools::max_value<T>() / 2), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(std::numeric_limits<T>::infinity(), tools::max_value<T>() / 2), tools::max_value<T>());
BOOST_CHECK_EQUAL(relative_difference(tools::max_value<T>(), std::numeric_limits<T>::infinity()), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(tools::max_value<T>(), std::numeric_limits<T>::infinity()), tools::max_value<T>());
BOOST_CHECK_EQUAL(relative_difference(tools::max_value<T>() / 2, std::numeric_limits<T>::infinity()), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(tools::max_value<T>() / 2, std::numeric_limits<T>::infinity()), tools::max_value<T>());
}
if(std::numeric_limits<T>::has_quiet_NaN)
{
BOOST_CHECK_EQUAL(relative_difference(std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()), tools::max_value<T>());
BOOST_CHECK_EQUAL(relative_difference(std::numeric_limits<T>::quiet_NaN(), T(2)), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(std::numeric_limits<T>::quiet_NaN(), T(2)), tools::max_value<T>());
BOOST_CHECK_EQUAL(relative_difference(T(2), std::numeric_limits<T>::quiet_NaN()), tools::max_value<T>());
BOOST_CHECK_EQUAL(epsilon_difference(T(2), std::numeric_limits<T>::quiet_NaN()), tools::max_value<T>());
}
}
BOOST_AUTO_TEST_CASE( test_main )
{
test_values(1.0f, "float");
test_values(1.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_values(1.0L, "long double");
test_values(boost::math::concepts::real_concept(0), "real_concept");
#endif
}
|