File: test_exp_sinh_quad_float.cu

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (133 lines) | stat: -rw-r--r-- 3,925 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

//  Copyright John Maddock 2016.
//  Copyright Matt Borland 2024.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <iostream>
#include <iomanip>
#include <vector>
#include <boost/math/quadrature/exp_sinh.hpp>
#include <boost/math/special_functions.hpp>
#include <boost/math/tools/precision.hpp>
#include "cuda_managed_ptr.hpp"
#include "stopwatch.hpp"

// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>

typedef float float_type;

__host__ __device__ float_type func(float_type x)
{
    BOOST_MATH_STD_USING
    return 1/(1+x*x);
}

/**
 * CUDA Kernel Device code
 *
 */
__global__ void cuda_test(float_type *out, int numElements)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    float_type tol = boost::math::tools::root_epsilon<float_type>();
    float_type error;
    float_type L1;
    boost::math::size_t levels;

    if (i < numElements)
    {
        out[i] = boost::math::quadrature::exp_sinh_integrate(func, tol, &error, &L1, &levels);
    }
}

/**
 * Host main routine
 */
int main(void)
{
    // Error code to check return values for CUDA calls
    cudaError_t err = cudaSuccess;

    // Print the vector length to be used, and compute its size
    int numElements = 50000;
    std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;

    // Allocate the managed input vector A
    cuda_managed_ptr<float_type> input_vector(numElements);

    // Allocate the managed output vector C
    cuda_managed_ptr<float_type> output_vector(numElements);

    // Initialize the input vectors
    for (int i = 0; i < numElements; ++i)
    {
        input_vector[i] = M_PI * (static_cast<float_type>(i) / numElements);
    }

    // Launch the Vector Add CUDA Kernel
    int threadsPerBlock = 512;
    int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
    std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;

    watch w;

    cuda_test<<<blocksPerGrid, threadsPerBlock>>>(output_vector.get(), numElements);
    cudaDeviceSynchronize();

    std::cout << "CUDA kernal done in: " << w.elapsed() << "s" << std::endl;

    err = cudaGetLastError();

    if (err != cudaSuccess)
    {
        std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
        return EXIT_FAILURE;
    }

    // Verify that the result vector is correct
    std::vector<float_type> results;
    results.reserve(numElements);
    w.reset();
    float_type tol = boost::math::tools::root_epsilon<float_type>();
    float_type error;
    float_type L1;
    boost::math::quadrature::exp_sinh<float_type> integrator;
    for(int i = 0; i < numElements; ++i)
    {
       results.push_back(integrator.integrate(func, tol, &error, &L1));
    }
    double t = w.elapsed();
    // check the results
    int failed_count = 0;
    for(int i = 0; i < numElements; ++i)
    {
        const auto eps = boost::math::epsilon_difference(output_vector[i], results[i]);
        if (eps > 10)
        {
            std::cerr   << std::setprecision(std::numeric_limits<float_type>::digits10)
                        << "Result verification failed at element " << i << "!\n"
                        << "Device: " << output_vector[i]
                        << "\n  Host: " << results[i]
                        << "\n   Eps: " << eps << "\n";
            failed_count++;
        }
        if (failed_count > 100)
        {
            break;
        }
    }

    if (failed_count != 0)
    {
        std::cout << "Test FAILED" << std::endl;
        return EXIT_FAILURE;
    }

    std::cout << "Test PASSED, normal calculation time: " << t << "s" << std::endl;
    std::cout << "Done\n";

    return 0;
}