1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Copyright John Maddock 2016.
// Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
#include <iostream>
#include <iomanip>
#include <vector>
#include <random>
#include <exception>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
#include <cuda.h>
#include <cuda_runtime.h>
#include <nvrtc.h>
typedef double float_type;
const char* cuda_kernel = R"(
typedef double float_type;
#include <boost/math/special_functions/expm1.hpp>
extern "C" __global__
void test_expm1_kernel(const float_type *in1, const float_type*, float_type *out, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
out[i] = boost::math::expm1(in1[i]);
}
}
)";
void checkCUDAError(cudaError_t result, const char* msg)
{
if (result != cudaSuccess)
{
std::cerr << msg << ": " << cudaGetErrorString(result) << std::endl;
exit(EXIT_FAILURE);
}
}
void checkCUError(CUresult result, const char* msg)
{
if (result != CUDA_SUCCESS)
{
const char* errorStr;
cuGetErrorString(result, &errorStr);
std::cerr << msg << ": " << errorStr << std::endl;
exit(EXIT_FAILURE);
}
}
void checkNVRTCError(nvrtcResult result, const char* msg)
{
if (result != NVRTC_SUCCESS)
{
std::cerr << msg << ": " << nvrtcGetErrorString(result) << std::endl;
exit(EXIT_FAILURE);
}
}
int main()
{
try
{
// Initialize CUDA driver API
checkCUError(cuInit(0), "Failed to initialize CUDA");
// Create CUDA context
CUcontext context;
CUdevice device;
checkCUError(cuDeviceGet(&device, 0), "Failed to get CUDA device");
checkCUError(cuCtxCreate(&context, 0, device), "Failed to create CUDA context");
nvrtcProgram prog;
nvrtcResult res;
res = nvrtcCreateProgram(&prog, cuda_kernel, "test_expm1_kernel.cu", 0, nullptr, nullptr);
checkNVRTCError(res, "Failed to create NVRTC program");
nvrtcAddNameExpression(prog, "test_expm1_kernel");
#ifdef BOOST_MATH_NVRTC_CI_RUN
const char* opts[] = {"--std=c++14", "--gpu-architecture=compute_75", "--include-path=/home/runner/work/cuda-math/boost-root/libs/cuda-math/include/"};
#else
const char* opts[] = {"--std=c++14", "--include-path=/home/mborland/Documents/boost/libs/cuda-math/include/"};
#endif
// Compile the program
res = nvrtcCompileProgram(prog, sizeof(opts) / sizeof(const char*), opts);
if (res != NVRTC_SUCCESS)
{
size_t log_size;
nvrtcGetProgramLogSize(prog, &log_size);
char* log = new char[log_size];
nvrtcGetProgramLog(prog, log);
std::cerr << "Compilation failed:\n" << log << std::endl;
delete[] log;
exit(EXIT_FAILURE);
}
// Get PTX from the program
size_t ptx_size;
nvrtcGetPTXSize(prog, &ptx_size);
char* ptx = new char[ptx_size];
nvrtcGetPTX(prog, ptx);
// Load PTX into CUDA module
CUmodule module;
CUfunction kernel;
checkCUError(cuModuleLoadDataEx(&module, ptx, 0, 0, 0), "Failed to load module");
checkCUError(cuModuleGetFunction(&kernel, module, "test_expm1_kernel"), "Failed to get kernel function");
int numElements = 5000;
float_type *h_in1, *h_in2, *h_out;
float_type *d_in1, *d_in2, *d_out;
// Allocate memory on the host
h_in1 = new float_type[numElements];
h_in2 = new float_type[numElements];
h_out = new float_type[numElements];
// Initialize input arrays
std::mt19937_64 rng(42);
std::uniform_real_distribution<float_type> dist(0.0f, 1.0f);
for (int i = 0; i < numElements; ++i)
{
h_in1[i] = static_cast<float_type>(dist(rng));
h_in2[i] = static_cast<float_type>(dist(rng));
}
checkCUDAError(cudaMalloc(&d_in1, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in1");
checkCUDAError(cudaMalloc(&d_in2, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in2");
checkCUDAError(cudaMalloc(&d_out, numElements * sizeof(float_type)), "Failed to allocate device memory for d_out");
checkCUDAError(cudaMemcpy(d_in1, h_in1, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in1");
checkCUDAError(cudaMemcpy(d_in2, h_in2, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in2");
int blockSize = 256;
int numBlocks = (numElements + blockSize - 1) / blockSize;
void* args[] = { &d_in1, &d_in2, &d_out, &numElements };
checkCUError(cuLaunchKernel(kernel, numBlocks, 1, 1, blockSize, 1, 1, 0, 0, args, 0), "Kernel launch failed");
checkCUDAError(cudaMemcpy(h_out, d_out, numElements * sizeof(float_type), cudaMemcpyDeviceToHost), "Failed to copy data back to host for h_out");
// Verify Result
for (int i = 0; i < numElements; ++i)
{
auto res = boost::math::expm1(h_in1[i]);
if (std::isfinite(res))
{
if (boost::math::epsilon_difference(res, h_out[i]) > 300)
{
std::cout << "error at line: " << i
<< "\nParallel: " << h_out[i]
<< "\n Serial: " << res
<< "\n Dist: " << boost::math::epsilon_difference(res, h_out[i]) << std::endl;
}
}
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);
delete[] h_in1;
delete[] h_in2;
delete[] h_out;
nvrtcDestroyProgram(&prog);
delete[] ptx;
cuCtxDestroy(context);
std::cout << "Kernel executed successfully." << std::endl;
return 0;
}
catch(const std::exception& e)
{
std::cerr << "Stopped with exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
}
|