1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// test_gamma_dist.cpp
// http://en.wikipedia.org/wiki/Gamma_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm
// Also:
// Weisstein, Eric W. "Gamma Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/GammaDistribution.html
#ifndef SYCL_LANGUAGE_VERSION
#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.
#endif
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/gamma.hpp>
using boost::math::gamma_distribution;
#include "../include_private/boost/math/tools/test.hpp"
#include "test_out_of_range.hpp"
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setprecision;
#include <limits>
using std::numeric_limits;
template <class RealType>
RealType NaivePDF(RealType shape, RealType scale, RealType x)
{
// Deliberately naive PDF calculator again which
// we'll compare our pdf function. However some
// published values to compare against would be better....
using namespace std;
RealType result = log(x) * (shape - 1) - x / scale - boost::math::lgamma(shape) - log(scale) * shape;
return exp(result);
}
template <class RealType>
void check_gamma(RealType shape, RealType scale, RealType x, RealType p, RealType q, RealType tol)
{
BOOST_CHECK_CLOSE(
::boost::math::cdf(
gamma_distribution<RealType>(shape, scale), // distribution.
x), // random variable.
p, // probability.
tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(
gamma_distribution<RealType>(shape, scale), // distribution.
x)), // random variable.
q, // probability complement.
tol); // %tolerance.
if(p < 0.999)
{
BOOST_CHECK_CLOSE(
::boost::math::quantile(
gamma_distribution<RealType>(shape, scale), // distribution.
p), // probability.
x, // random variable.
tol); // %tolerance.
}
if(q < 0.999)
{
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(
gamma_distribution<RealType>(shape, scale), // distribution.
q)), // probability complement.
x, // random variable.
tol); // %tolerance.
}
// PDF:
BOOST_CHECK_CLOSE(
boost::math::pdf(
gamma_distribution<RealType>(shape, scale), // distribution.
x), // random variable.
NaivePDF(shape, scale, x), // PDF
tol); // %tolerance.
// LOGPDF:
BOOST_CHECK_CLOSE(
boost::math::logpdf(
gamma_distribution<RealType>(shape, scale), // distribution.
x), // random variable.
log(boost::math::pdf(gamma_distribution<RealType>(shape, scale), x)), // PDF
tol); // %tolerance.
}
template <class RealType>
void test_spots(RealType)
{
// Basic sanity checks
//
// 15 decimal places expressed as a percentage.
// The first tests use values generated by MathCAD,
// and should be accurate to around double precision.
//
RealType tolerance = (std::max)(RealType(5e-14f), std::numeric_limits<RealType>::epsilon() * 20) * 100;
cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
check_gamma(
static_cast<RealType>(0.5),
static_cast<RealType>(1),
static_cast<RealType>(0.5),
static_cast<RealType>(0.682689492137085),
static_cast<RealType>(1-0.682689492137085),
tolerance);
check_gamma(
static_cast<RealType>(2),
static_cast<RealType>(1),
static_cast<RealType>(0.5),
static_cast<RealType>(0.090204010431050),
static_cast<RealType>(1-0.090204010431050),
tolerance);
check_gamma(
static_cast<RealType>(40),
static_cast<RealType>(1),
static_cast<RealType>(10),
static_cast<RealType>(7.34163631456064E-13),
static_cast<RealType>(1-7.34163631456064E-13),
tolerance);
//
// Some more test data generated by the online
// calculator at http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
// This has the advantage of supporting the scale parameter as well
// as shape, but has only a few digits accuracy, and produces
// some deeply suspect values if the shape parameter is < 1
// (it doesn't agree with MathCAD or this implementation).
// To be fair the incomplete gamma is tricky to get right in this area...
//
tolerance = 1e-5f * 100; // 5 decimal places as a percentage
cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
check_gamma(
static_cast<RealType>(2),
static_cast<RealType>(1)/5,
static_cast<RealType>(0.1),
static_cast<RealType>(0.090204),
static_cast<RealType>(1-0.090204),
tolerance);
check_gamma(
static_cast<RealType>(2),
static_cast<RealType>(1)/5,
static_cast<RealType>(0.5),
static_cast<RealType>(1-0.287298),
static_cast<RealType>(0.287298),
tolerance);
check_gamma(
static_cast<RealType>(3),
static_cast<RealType>(2),
static_cast<RealType>(1),
static_cast<RealType>(0.014388),
static_cast<RealType>(1-0.014388),
tolerance * 10); // one less decimal place in the test value
check_gamma(
static_cast<RealType>(3),
static_cast<RealType>(2),
static_cast<RealType>(5),
static_cast<RealType>(0.456187),
static_cast<RealType>(1-0.456187),
tolerance);
RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
gamma_distribution<RealType> dist(8, 3);
RealType x = static_cast<RealType>(0.125);
using namespace std; // ADL of std names.
// mean:
BOOST_CHECK_CLOSE(
mean(dist)
, static_cast<RealType>(8*3), tol2);
// variance:
BOOST_CHECK_CLOSE(
variance(dist)
, static_cast<RealType>(8*3*3), tol2);
// std deviation:
BOOST_CHECK_CLOSE(
standard_deviation(dist)
, sqrt(static_cast<RealType>(8*3*3)), tol2);
// hazard:
BOOST_CHECK_CLOSE(
hazard(dist, x)
, pdf(dist, x) / cdf(complement(dist, x)), tol2);
// cumulative hazard:
BOOST_CHECK_CLOSE(
chf(dist, x)
, -log(cdf(complement(dist, x))), tol2);
// coefficient_of_variation:
BOOST_CHECK_CLOSE(
coefficient_of_variation(dist)
, standard_deviation(dist) / mean(dist), tol2);
// mode:
BOOST_CHECK_CLOSE(
mode(dist)
, static_cast<RealType>(7 * 3), tol2);
// skewness:
BOOST_CHECK_CLOSE(
skewness(dist)
, 2 / sqrt(static_cast<RealType>(8)), tol2);
// kurtosis:
BOOST_CHECK_CLOSE(
kurtosis(dist)
, 3 + 6 / static_cast<RealType>(8), tol2);
// kurtosis excess:
BOOST_CHECK_CLOSE(
kurtosis_excess(dist)
, 6 / static_cast<RealType>(8), tol2);
BOOST_CHECK_CLOSE(
median(dist), static_cast<RealType>(23.007748327502412), // double precision test value
(std::max)(tol2, static_cast<RealType>(std::numeric_limits<double>::epsilon() * 2 * 100))); // 2 eps as percent
using std::log;
RealType expected_entropy = RealType(8) + log(RealType(3)) + boost::math::lgamma(RealType(8)) - 7*boost::math::digamma(RealType(8));
BOOST_CHECK_CLOSE(
entropy(dist), expected_entropy, tol2);
// Rely on default definition in derived accessors.
// error tests
check_out_of_range<boost::math::gamma_distribution<RealType> >(1, 1);
BOOST_MATH_CHECK_THROW(boost::math::gamma_distribution<RealType>(0, 1), std::domain_error);
BOOST_MATH_CHECK_THROW(boost::math::gamma_distribution<RealType>(-1, 1), std::domain_error);
BOOST_MATH_CHECK_THROW(boost::math::gamma_distribution<RealType>(1, 0), std::domain_error);
BOOST_MATH_CHECK_THROW(boost::math::gamma_distribution<RealType>(1, -1), std::domain_error);
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
// Basic sanity-check spot values.
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_gamma_dist.exe"
Running 1 test case...
Tolerance for type float is 0.000238419 %
Tolerance for type float is 0.001 %
Tolerance for type double is 5e-012 %
Tolerance for type double is 0.001 %
Tolerance for type long double is 5e-012 %
Tolerance for type long double is 0.001 %
Tolerance for type class boost::math::concepts::real_concept is 5e-012 %
Tolerance for type class boost::math::concepts::real_concept is 0.001 %
*** No errors detected
*/
|