File: test_ibeta_invb_float.cu

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (149 lines) | stat: -rw-r--r-- 4,637 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//  Copyright John Maddock 2016.
//  Copyright Matt Borland 2024.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false

// floating-point value does not fit in required floating-point type
#pragma nv_diag_suppress 221

#include <iostream>
#include <iomanip>
#include <vector>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/special_functions/relative_difference.hpp>
#include <boost/array.hpp>
#include "cuda_managed_ptr.hpp"
#include "stopwatch.hpp"

// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>

typedef float float_type;

/**
 * CUDA Kernel Device code
 *
 */
__global__ void cuda_test(const float_type *in1, const float_type *in2, const float_type *in3, float_type *out, int numElements)
{
    using std::cos;
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < numElements)
    {
        out[i] = boost::math::ibeta_invb(in1[i], in2[i], in3[i]);
    }
}

template <class T> struct table_type { typedef T type; };
typedef float_type T;
#define SC_(x) static_cast<T>(x)

#include "ibeta_data.ipp"
#include "ibeta_small_data.ipp"

/**
 * Host main routine
 */
int main(void)
{
  try{
    // Consolidate the test data:
    std::vector<float_type> v1, v2, v3;

    for(unsigned i = 0; i < ibeta_data.size(); ++i)
    {
       v1.push_back(ibeta_data[i][0]);
       v2.push_back(ibeta_data[i][1]);
       v3.push_back(ibeta_data[i][2]);
    }
    for(unsigned i = 0; i < ibeta_small_data.size(); ++i)
    {
       v1.push_back(ibeta_small_data[i][0]);
       v2.push_back(ibeta_small_data[i][1]);
       v3.push_back(ibeta_small_data[i][2]);
    }

    // Error code to check return values for CUDA calls
    cudaError_t err = cudaSuccess;

    // Print the vector length to be used, and compute its size
    int numElements = 50000;
    std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;

    // Allocate the managed input vector A
    cuda_managed_ptr<float_type> input_vector1(numElements);
    cuda_managed_ptr<float_type> input_vector2(numElements);
    cuda_managed_ptr<float_type> input_vector3(numElements);

    // Allocate the managed output vector C
    cuda_managed_ptr<float_type> output_vector(numElements);

    // Initialize the input vectors
    for (int i = 0; i < numElements; ++i)
    {
        int table_id = i % v1.size();
        input_vector1[i] = v1[table_id];
        input_vector2[i] = v2[table_id];
        input_vector3[i] = v3[table_id];
    }

    // Launch the Vector Add CUDA Kernel
    int threadsPerBlock = 256;
    int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
    std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;

    watch w;
    cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), input_vector2.get(), input_vector3.get(), output_vector.get(), numElements);
    cudaDeviceSynchronize();
    std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;

    err = cudaGetLastError();
    if (err != cudaSuccess)
    {
        std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
        return EXIT_FAILURE;
    }

    // Verify that the result vector is correct
    std::vector<float_type> results;
    results.reserve(numElements);
    w.reset();
    for(int i = 0; i < numElements; ++i)
       results.push_back(boost::math::ibeta_invb(input_vector1[i], input_vector2[i], input_vector3[i]));
    double t = w.elapsed();
    bool failed = false;
    // check the results
    for(int i = 0; i < numElements; ++i)
    {
        if (boost::math::isfinite(output_vector[i]))
        {
            if (boost::math::epsilon_difference(output_vector[i], results[i]) > 300)
            {
                std::cerr << "Result verification failed at element " << i << "!" << std::endl;
                std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
                failed = true;
            }
        }
    }

    if (failed)
    {
        return EXIT_FAILURE;
    }

    std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
    std::cout << "Done\n";
  }
  catch(const std::exception& e)
  {
    std::cerr << "Stopped with exception: " << e.what() << std::endl;
  }
  return 0;
}