File: test_inverse_gaussian.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (392 lines) | stat: -rw-r--r-- 17,027 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright Paul A. Bristow 2010.
// Copyright John Maddock 2010.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifdef _MSC_VER
#  pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'type' was previously defined as a type
// in Boost.test and lexical_cast
#  pragma warning (disable : 4310) // cast truncates constant value
#  pragma warning (disable : 4512) // assignment operator could not be generated

#endif

//#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.

#include <boost/math/tools/config.hpp>
#include "../include_private/boost/math/tools/test.hpp"

#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#endif

#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>

#include <boost/math/distributions/inverse_gaussian.hpp>
using boost::math::inverse_gaussian_distribution;
using boost::math::inverse_gaussian;

#include "test_out_of_range.hpp"

#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setprecision;
#include <limits>
using std::numeric_limits;
#include <cmath>
using std::log;

template <class RealType>
void check_inverse_gaussian(RealType mean, RealType scale, RealType x, RealType p, RealType q, RealType tol)
{
 using boost::math::inverse_gaussian_distribution;

  BOOST_CHECK_CLOSE_FRACTION(
    ::boost::math::cdf(   // Check cdf
    inverse_gaussian_distribution<RealType>(mean, scale),      // distribution.
    x),    // random variable.
    p,     // probability.
    tol);   // tolerance.
  BOOST_CHECK_CLOSE_FRACTION(
    ::boost::math::cdf( // Check cdf complement
    complement( 
    inverse_gaussian_distribution<RealType>(mean, scale),   // distribution.
    x)),   // random variable.
    q,      // probability complement.
    tol);    // %tolerance.
  BOOST_CHECK_CLOSE_FRACTION(
    ::boost::math::quantile( // Check quantile
    inverse_gaussian_distribution<RealType>(mean, scale),    // distribution.
    p),   // probability.
    x,   // random variable.
    tol);   // tolerance.
  BOOST_CHECK_CLOSE_FRACTION(
    ::boost::math::quantile( // Check quantile complement
    complement(
    inverse_gaussian_distribution<RealType>(mean, scale),   // distribution.
    q)),   // probability complement.
    x,     // random variable.
    tol);  // tolerance.

   inverse_gaussian_distribution<RealType> dist (mean, scale);

   if((p < 0.999) && (q < 0.999))
   {  // We can only check this if P is not too close to 1,
      // so that we can guarantee Q is accurate:
      BOOST_CHECK_CLOSE_FRACTION(
        cdf(complement(dist, x)), q, tol); // 1 - cdf
      BOOST_CHECK_CLOSE_FRACTION(
        quantile(dist, p), x, tol); // quantile(cdf) = x
      BOOST_CHECK_CLOSE_FRACTION(
        quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x
   }
}

template <class RealType>
void test_spots(RealType)
{
  // Basic sanity checks
  RealType tolerance = static_cast<RealType>(1e-4L); // 
  cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << endl;

  // Check some bad parameters to the distribution,
#ifndef BOOST_NO_EXCEPTIONS
  BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, 0), std::domain_error); // zero scale
  BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, -1), std::domain_error); // negative scale
#else
  BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, 0), std::domain_error); // zero scale
  BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, -1), std::domain_error); // negative scale
#endif

  inverse_gaussian_distribution<RealType> w11;

  // Error tests:
  check_out_of_range<inverse_gaussian_distribution<RealType> >(0.25, 1);
  
  // Check complements.

    BOOST_CHECK_CLOSE_FRACTION(
     cdf(complement(w11, 1.)), static_cast<RealType>(1) - cdf(w11, 1.), tolerance); // cdf complement
    // cdf(complement = 1 - cdf  - but if cdf near unity, then loss of accuracy in cdf,
    // but cdf complement is near zero but more accurate.

     BOOST_CHECK_CLOSE_FRACTION( // quantile(complement p) == quantile(1 - p)
     quantile(complement(w11, static_cast<RealType>(0.5))), 
     quantile(w11, 1 - static_cast<RealType>(0.5)),
     tolerance); // cdf complement

  check_inverse_gaussian(
     static_cast<RealType>(2),
     static_cast<RealType>(3),
     static_cast<RealType>(1),
     static_cast<RealType>(0.28738674440477374),
     static_cast<RealType>(1 - 0.28738674440477374),
     tolerance);

  RealType tolfeweps = boost::math::tools::epsilon<RealType>() * 5;

  inverse_gaussian_distribution<RealType> dist(2, 3);

  using namespace std; // ADL of std names.
  // mean:
  BOOST_CHECK_CLOSE_FRACTION(mean(dist),
    static_cast<RealType>(2), tolfeweps);
  BOOST_CHECK_CLOSE_FRACTION(scale(dist),
    static_cast<RealType>(3), tolfeweps);

  // variance:
  BOOST_CHECK_CLOSE_FRACTION(variance(dist),
    static_cast<RealType>(2.6666666666666666666666666666666666666666666666666666666667L), 1000*tolfeweps);
  // std deviation:
  BOOST_CHECK_CLOSE_FRACTION(standard_deviation(dist), 
    static_cast<RealType>(1.632993L), 1000 * tolerance);
  //// hazard:
  //BOOST_CHECK_CLOSE_FRACTION(hazard(dist, x),
  //  pdf(dist, x) / cdf(complement(dist, x)), tolerance);
  //// cumulative hazard:
  //BOOST_CHECK_CLOSE_FRACTION(chf(dist, x),
  //  -log(cdf(complement(dist, x))), tolerance);
  // coefficient_of_variation:
  BOOST_CHECK_CLOSE_FRACTION(coefficient_of_variation(dist),
    standard_deviation(dist) / mean(dist), tolerance);
  // mode:
  BOOST_CHECK_CLOSE_FRACTION(mode(dist),
    static_cast<RealType>(0.8284271L), tolerance);

  // median
  BOOST_CHECK_CLOSE_FRACTION(median(dist),
    static_cast<RealType>(1.5122506636053668L), tolerance);
  // Fails for real_concept - because std::numeric_limits<RealType>::digits = 0

  // skewness:
  BOOST_CHECK_CLOSE_FRACTION(skewness(dist),
    static_cast<RealType>(2.449490L), tolerance);
  // kurtosis:
  BOOST_CHECK_CLOSE_FRACTION(kurtosis(dist),
    static_cast<RealType>(10-3), tolerance);
  BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(dist),
    static_cast<RealType>(10), tolerance);
} // template <class RealType>void test_spots(RealType)

BOOST_AUTO_TEST_CASE( test_main )
{
  using boost::math::inverse_gaussian;
  using boost::math::inverse_gaussian_distribution;

  //int precision = 17; // std::numeric_limits<double::max_digits10;
  double tolfeweps = numeric_limits<double>::epsilon() * 5;
  //double tol6decdigits = numeric_limits<float>::epsilon() * 2;
  // Check that can generate inverse_gaussian distribution using the two convenience methods:
  boost::math::inverse_gaussian w12(1., 2); // Using typedef
  inverse_gaussian_distribution<> w23(2., 3); // Using default RealType double.
  boost::math::inverse_gaussian w11; // Use default unity values for mean and scale.
  // Note NOT myn01() as the compiler will interpret as a function!
  BOOST_CHECK_EQUAL(w11.mean(), 1);
  BOOST_CHECK_EQUAL(w11.scale(), 1);
  BOOST_CHECK_EQUAL(w23.mean(), 2);
  BOOST_CHECK_EQUAL(w23.scale(), 3);
  BOOST_CHECK_EQUAL(w23.shape(), 1.5L);

  // Check the synonyms, provided to allow generic use of find_location and find_scale.
  BOOST_CHECK_EQUAL(w11.mean(), w11.location());
  BOOST_CHECK_EQUAL(w11.scale(), w11.scale());

  BOOST_CHECK_CLOSE_FRACTION(mean(w11), static_cast<double>(1), tolfeweps); // Default mean == unity
  BOOST_CHECK_CLOSE_FRACTION(scale(w11), static_cast<double>(1), tolfeweps); // Default mean == unity

  // median
  // (test double because fails for real_concept because numeric_limits<real_concept>::digits = 0)
  BOOST_CHECK_CLOSE_FRACTION(median(w11),
    static_cast<double>(0.67584130569523893), tolfeweps);
  BOOST_CHECK_CLOSE_FRACTION(median(w23),
    static_cast<double>(1.5122506636053668), tolfeweps);
  
  // Initial spot tests using double values from R.
  // library(SuppDists)
  // formatC(SuppDists::dinverse_gaussian(1, 1, 1), digits=17) ...
  BOOST_CHECK_CLOSE_FRACTION( //  x = 1
    pdf(w11, 1.), static_cast<double>(0.3989422804014327), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION( //  x = 1
    logpdf(w11, 1.), static_cast<double>(log(0.3989422804014327)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 1.), static_cast<double>(0.66810200122317065), 10 * tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w11, 0.1), static_cast<double>(0.21979480031862672), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w11, 0.1), static_cast<double>(log(0.21979480031862672)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), 10 * tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION( // small x
    pdf(w11, 0.01), static_cast<double>(2.0811768202028392e-19), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION( // small x
    logpdf(w11, 0.01), static_cast<double>(log(2.0811768202028392e-19)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.01), static_cast<double>(4.122313403318778e-23), 10 * tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION( // smaller x
    pdf(w11, 0.001), static_cast<double>(2.4420044378793562e-213),  tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION( // smaller x
    logpdf(w11, 0.001), static_cast<double>(log(2.4420044378793562e-213)),  tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.001), static_cast<double>(4.8791443010851493e-219), 1000 * tolfeweps); // cdf
  // 4.8791443010859224e-219 versus 4.8791443010851493e-219 so still 14 decimal digits.

  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 0.66810200122317065), static_cast<double>(1.), 1 * tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), 1 * tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 4.122313403318778e-23), 0.01, 1 * tolfeweps); // quantile
  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 2.4420044378793562e-213), 0.001, 0.03); // quantile
  // quantile 0.001026926242348481 compared to expected 0.001, so much less accurate,
  // but better than R that gives up completely!
  // R Error in SuppDists::qinverse_gaussian(4.87914430108515e-219, 1, 1) : Infinite value in NewtonRoot()

  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w11, 0.5), static_cast<double>(0.87878257893544476), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w11, 0.5), static_cast<double>(log(0.87878257893544476)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w11, 2), static_cast<double>(0.10984782236693059), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w11, 2), static_cast<double>(log(0.10984782236693059)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 2), static_cast<double>(.88547542598600637), tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w11, 10), static_cast<double>(0.00021979480031862676), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w11, 10), static_cast<double>(log(0.00021979480031862676)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 10), static_cast<double>(0.99964958546279115), tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w11, 100), static_cast<double>(2.0811768202028246e-25), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w11, 100), static_cast<double>(log(2.0811768202028246e-25)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 100), static_cast<double>(1), tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w11, 1000), static_cast<double>(2.4420044378793564e-222), 10 * tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w11, 1000), static_cast<double>(log(2.4420044378793564e-222)), 10 * tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 1000), static_cast<double>(1.), tolfeweps); // cdf

  // A few more misc tests, probably not very useful.  
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 1.), static_cast<double>(0.66810200122317065), tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), tolfeweps * 5); // cdf
  // 0.0040761113207110162   0.0040761113207110362
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.2), static_cast<double>(0.063753567519976254), tolfeweps * 5); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.9), static_cast<double>(0.62502320258649202), tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.99), static_cast<double>(0.66408247396139031), tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 0.999), static_cast<double>(0.66770275955311675), tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 10.), static_cast<double>(0.99964958546279115), tolfeweps); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w11, 50.), static_cast<double>(0.99999999999992029), tolfeweps); // cdf

  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 0.3649755481729598), static_cast<double>(0.5), tolfeweps); // quantile
  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 0.62502320258649202), static_cast<double>(0.9), tolfeweps); // quantile
  BOOST_CHECK_CLOSE_FRACTION(
    quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), tolfeweps); // quantile

  // Wald(2,3) tests
  // ===================
  BOOST_CHECK_CLOSE_FRACTION( // formatC(SuppDists::dinvGauss(1, 2, 3), digits=17) "0.47490884963330904"
    pdf(w23, 1.), static_cast<double>(0.47490884963330904), tolfeweps ); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w23, 1.), static_cast<double>(log(0.47490884963330904)), tolfeweps ); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w23, 0.1), static_cast<double>(2.8854207087665401e-05), tolfeweps * 2); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w23, 0.1), static_cast<double>(log(2.8854207087665401e-05)), tolfeweps * 2); // logpdf
  //2.8854207087665452e-005 2.8854207087665401e-005
  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w23, 10.), static_cast<double>(log(0.0019822751498574636)), tolfeweps); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w23, 10.), static_cast<double>(log(0.0019822751498574636)), tolfeweps); // logpdf

  // Bigger changes in mean and scale.

  inverse_gaussian w012(0.1, 2);
  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w012, 1.), static_cast<double>(3.7460367141230404e-36), tolfeweps ); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w012, 1.), static_cast<double>(log(3.7460367141230404e-36)), tolfeweps ); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w012, 1.), static_cast<double>(1), tolfeweps ); // pdf

  inverse_gaussian w0110(0.1, 10);
  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w0110, 1.), static_cast<double>(1.6279643678071011e-176), 100 * tolfeweps ); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w0110, 1.), static_cast<double>(log(1.6279643678071011e-176)), 100 * tolfeweps ); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w0110, 1.), static_cast<double>(1), tolfeweps ); // cdf
  BOOST_CHECK_CLOSE_FRACTION(
     cdf(complement(w0110, 1.)), static_cast<double>(3.2787685715328683e-179), 1e6 * tolfeweps ); // cdf complement
  // Differs because of loss of accuracy.

  BOOST_CHECK_CLOSE_FRACTION(
    pdf(w0110, 0.1), static_cast<double>(39.894228040143268), tolfeweps ); // pdf
  BOOST_CHECK_CLOSE_FRACTION(
    logpdf(w0110, 0.1), static_cast<double>(log(39.894228040143268)), tolfeweps ); // logpdf
  BOOST_CHECK_CLOSE_FRACTION(
    cdf(w0110, 0.1), static_cast<double>(0.51989761564832704), 10 * tolfeweps ); // cdf

    // Basic sanity-check spot values for all floating-point types..
  // (Parameter value, arbitrarily zero, only communicates the floating point type).
  test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
  test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
  test_spots(0.0L); // Test long double.
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
  test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
  std::cout << "<note>The long double tests have been disabled on this platform "
    "either because the long double overloads of the usual math functions are "
    "not available at all, or because they are too inaccurate for these tests "
    "to pass.</note>" << std::endl;
#endif
  /*      */
  
} // BOOST_AUTO_TEST_CASE( test_main )

/*

Output:


*/