File: test_laplace_pdf_nvrtc_double.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (191 lines) | stat: -rw-r--r-- 6,733 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//  Copyright John Maddock 2016.
//  Copyright Matt Borland 2024.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false

// Must be included first
#include <nvrtc.h>
#include <cuda.h>
#include <cuda_runtime.h>

#include <iostream>
#include <iomanip>
#include <vector>
#include <random>
#include <exception>
#include <boost/math/distributions/laplace.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/special_functions/relative_difference.hpp>

typedef double float_type;

const char* cuda_kernel = R"(
typedef double float_type;
#include <cuda/std/type_traits>
#include <boost/math/distributions/laplace.hpp>
extern "C" __global__ 
void test_laplace_kernel(const float_type *in1, const float_type*, float_type *out, int numElements)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < numElements)
    {
        out[i] = pdf(boost::math::laplace_distribution<float_type>(), in1[i]);
    }
}
)";

void checkCUDAError(cudaError_t result, const char* msg)
{
    if (result != cudaSuccess)
    {
        std::cerr << msg << ": " << cudaGetErrorString(result) << std::endl;
        exit(EXIT_FAILURE);
    }
}

void checkCUError(CUresult result, const char* msg)
{
    if (result != CUDA_SUCCESS)
    {
        const char* errorStr;
        cuGetErrorString(result, &errorStr);
        std::cerr << msg << ": " << errorStr << std::endl;
        exit(EXIT_FAILURE);
    }
}

void checkNVRTCError(nvrtcResult result, const char* msg)
{
    if (result != NVRTC_SUCCESS)
    {
        std::cerr << msg << ": " << nvrtcGetErrorString(result) << std::endl;
        exit(EXIT_FAILURE);
    }
}

int main() 
{
    try
    {
        // Initialize CUDA driver API
        checkCUError(cuInit(0), "Failed to initialize CUDA");

        // Create CUDA context
        CUcontext context;
        CUdevice device;
        checkCUError(cuDeviceGet(&device, 0), "Failed to get CUDA device");
        checkCUError(cuCtxCreate(&context, 0, device), "Failed to create CUDA context");

        nvrtcProgram prog;
        nvrtcResult res;

        res = nvrtcCreateProgram(&prog, cuda_kernel, "test_laplace_kernel.cu", 0, nullptr, nullptr);
        checkNVRTCError(res, "Failed to create NVRTC program");

        nvrtcAddNameExpression(prog, "test_laplace_kernel");

        #ifdef BOOST_MATH_NVRTC_CI_RUN
        const char* opts[] = {"--std=c++14", "--gpu-architecture=compute_75", "--include-path=/home/runner/work/cuda-math/boost-root/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
        #else
        const char* opts[] = {"--std=c++14", "--include-path=/home/mborland/Documents/boost/libs/cuda-math/include/", "-I/usr/local/cuda/include"};
        #endif

        // Compile the program
        res = nvrtcCompileProgram(prog, sizeof(opts) / sizeof(const char*), opts);
        if (res != NVRTC_SUCCESS) 
        {
            size_t log_size;
            nvrtcGetProgramLogSize(prog, &log_size);
            char* log = new char[log_size];
            nvrtcGetProgramLog(prog, log);
            std::cerr << "Compilation failed:\n" << log << std::endl;
            delete[] log;
            exit(EXIT_FAILURE);
        }

        // Get PTX from the program
        size_t ptx_size;
        nvrtcGetPTXSize(prog, &ptx_size);
        char* ptx = new char[ptx_size];
        nvrtcGetPTX(prog, ptx);

        // Load PTX into CUDA module
        CUmodule module;
        CUfunction kernel;
        checkCUError(cuModuleLoadDataEx(&module, ptx, 0, 0, 0), "Failed to load module");
        checkCUError(cuModuleGetFunction(&kernel, module, "test_laplace_kernel"), "Failed to get kernel function");

        int numElements = 5000;
        float_type *h_in1, *h_in2, *h_out;
        float_type *d_in1, *d_in2, *d_out;

        // Allocate memory on the host
        h_in1 = new float_type[numElements];
        h_in2 = new float_type[numElements];
        h_out = new float_type[numElements];

        // Initialize input arrays
        std::mt19937_64 rng(42);
        std::uniform_real_distribution<float_type> dist(0.0f, 1.0f);
        for (int i = 0; i < numElements; ++i) 
        {
            h_in1[i] = static_cast<float_type>(dist(rng));
            h_in2[i] = static_cast<float_type>(dist(rng));
        }

        checkCUDAError(cudaMalloc(&d_in1, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in1");
        checkCUDAError(cudaMalloc(&d_in2, numElements * sizeof(float_type)), "Failed to allocate device memory for d_in2");
        checkCUDAError(cudaMalloc(&d_out, numElements * sizeof(float_type)), "Failed to allocate device memory for d_out");

        checkCUDAError(cudaMemcpy(d_in1, h_in1, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in1");
        checkCUDAError(cudaMemcpy(d_in2, h_in2, numElements * sizeof(float_type), cudaMemcpyHostToDevice), "Failed to copy data to device for d_in2");

        int blockSize = 256;
        int numBlocks = (numElements + blockSize - 1) / blockSize;
        void* args[] = { &d_in1, &d_in2, &d_out, &numElements };
        checkCUError(cuLaunchKernel(kernel, numBlocks, 1, 1, blockSize, 1, 1, 0, 0, args, 0), "Kernel launch failed");

        checkCUDAError(cudaMemcpy(h_out, d_out, numElements * sizeof(float_type), cudaMemcpyDeviceToHost), "Failed to copy data back to host for h_out");

        // Verify Result
        for (int i = 0; i < numElements; ++i) 
        {
            auto res = pdf(boost::math::laplace_distribution<float_type>(), h_in1[i]);
            
            if (boost::math::isfinite(res))
            {
                if (boost::math::epsilon_difference(res, h_out[i]) > 300)
                {
                    std::cout << "error at line: " << i
                            << "\nParallel: " << h_out[i]
                            << "\n  Serial: " << res
                            << "\n    Dist: " << boost::math::epsilon_difference(res, h_out[i]) << std::endl;
                }
            }
        }

        cudaFree(d_in1);
        cudaFree(d_in2);
        cudaFree(d_out);
        delete[] h_in1;
        delete[] h_in2;
        delete[] h_out;

        nvrtcDestroyProgram(&prog);
        delete[] ptx;

        cuCtxDestroy(context);

        std::cout << "Kernel executed successfully." << std::endl;
        return 0;
    }
    catch(const std::exception& e)
    {
        std::cerr << "Stopped with exception: " << e.what() << std::endl;
        return EXIT_FAILURE;
    }
}