1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/non_central_beta.hpp>
#include <boost/math/distributions/poisson.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
template <class T>
T nc_beta_cdf(T a, T b, T nc, T x)
{
#ifdef NC_BETA_CDF_FUNCTION_TO_TEST
return NC_BETA_CDF_FUNCTION_TO_TEST(a, b, nc, x);
#else
return cdf(boost::math::non_central_beta_distribution<T>(a, b, nc), x);
#endif
}
template <class T>
T nc_beta_ccdf(T a, T b, T nc, T x)
{
#ifdef NC_BETA_CCDF_FUNCTION_TO_TEST
return NC_BETA_CCDF_FUNCTION_TO_TEST(a, b, nc, x);
#else
return cdf(complement(boost::math::non_central_beta_distribution<T>(a, b, nc), x));
#endif
}
template <typename Real, typename T>
void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
{
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
value_type(*fp1)(value_type, value_type, value_type, value_type) = nc_beta_cdf;
boost::math::tools::test_result<value_type> result;
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_BETA_CDF_FUNCTION_TO_TEST))
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2, 3),
extract_result<Real>(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central beta CDF", test);
#endif
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_BETA_CCDF_FUNCTION_TO_TEST))
fp1 = nc_beta_ccdf;
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2, 3),
extract_result<Real>(5));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central beta CDF complement", test);
#endif
std::cout << std::endl;
}
template <typename Real, typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
#ifndef ERROR_REPORTING_MODE
typedef Real value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
//
// Test case 493 fails at float precision: not enough bits to get
// us back where we started:
//
if((i == 493) && boost::is_same<float, value_type>::value)
continue;
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][4]));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][4]);
value_type pt = data[i][3];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][5] == 0)
{
BOOST_CHECK(1 == quantile(complement(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][5])));
}
else if(data[i][5] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), data[i][5]));
value_type pt = data[i][3];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
value_type m = mode(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]));
if((m == 1) || (m == 0))
break;
value_type p = pdf(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), m);
if(m * (1 + sqrt(precision) * 10) < 1)
{
BOOST_CHECK_EX(pdf(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), m * (1 + sqrt(precision) * 10)) <= p, i);
}
if(m * (1 - sqrt(precision)) * 10 > boost::math::tools::min_value<value_type>())
{
BOOST_CHECK_EX(pdf(boost::math::non_central_beta_distribution<value_type>(data[i][0], data[i][1], data[i][2]), m * (1 - sqrt(precision)) * 10) <= p, i);
}
}
}
#endif
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#if !defined(TEST_DATA) || (TEST_DATA == 1)
#include "ncbeta.ipp"
do_test_nc_chi_squared<T>(ncbeta, type_name, "Non Central Beta, medium parameters");
quantile_sanity_check<T>(ncbeta, type_name, "Non Central Beta, medium parameters");
#endif
#if !defined(TEST_DATA) || (TEST_DATA == 2)
#include "ncbeta_big.ipp"
do_test_nc_chi_squared<T>(ncbeta_big, type_name, "Non Central Beta, large parameters");
// Takes too long to run:
// quantile_sanity_check(ncbeta_big, type_name, "Non Central Beta, large parameters");
#endif
}
|