File: test_nc_chi_squared.hpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (463 lines) | stat: -rw-r--r-- 19,814 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
//  (C) Copyright John Maddock 2007.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#endif

#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#include "handle_test_result.hpp"
#include "table_type.hpp"

#include <iostream>
#include <iomanip>

#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
      {\
      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
      BOOST_CHECK_CLOSE(a, b, prec); \
      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
            {\
         std::cerr << "Failure was at row " << i << std::endl;\
         std::cerr << std::setprecision(35); \
         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
            }\
      }

#define BOOST_CHECK_EX(a, i) \
      {\
      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
      BOOST_CHECK(a); \
      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
            {\
         std::cerr << "Failure was at row " << i << std::endl;\
         std::cerr << std::setprecision(35); \
         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
            }\
      }

template <class RealType>
RealType naive_pdf(RealType v, RealType lam, RealType x)
{
   // Formula direct from
   // http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
   // with no simplification:
   RealType sum, term, prefix(1);
   RealType eps = boost::math::tools::epsilon<RealType>();
   term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x);
   for(int i = 1;; ++i)
   {
      prefix *= lam / (2 * i);
      term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x);
      sum += term;
      if(term / sum < eps)
         break;
   }
   return sum * exp(-lam / 2);
}

template <class RealType>
void test_spot(
   RealType df,    // Degrees of freedom
   RealType ncp,   // non-centrality param
   RealType cs,    // Chi Square statistic
   RealType P,     // CDF
   RealType Q,     // Complement of CDF
   RealType tol)   // Test tolerance
{
   boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp);
   BOOST_CHECK_CLOSE(
      cdf(dist, cs), P, tol);
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
   try{
      BOOST_CHECK_CLOSE(
         pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 150);
   }
   catch(const std::overflow_error&)
   {
   }
#endif
   if((P < 0.99) && (Q < 0.99))
   {
      //
      // We can only check this if P is not too close to 1,
      // so that we can guarantee Q is reasonably free of error:
      //
      BOOST_CHECK_CLOSE(
         cdf(complement(dist, cs)), Q, tol);
      BOOST_CHECK_CLOSE(
         quantile(dist, P), cs, tol * 10);
      BOOST_CHECK_CLOSE(
         quantile(complement(dist, Q)), cs, tol * 10);
      BOOST_CHECK_CLOSE(
         dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10);
      BOOST_CHECK_CLOSE(
         dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10);
      BOOST_CHECK_CLOSE(
         dist.find_non_centrality(df, cs, P), ncp, tol * 10);
      BOOST_CHECK_CLOSE(
         dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10);
   }
}

template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
#ifndef ERROR_REPORTING_MODE
   RealType tolerance = (std::max)(
      boost::math::tools::epsilon<RealType>(),
      (RealType)boost::math::tools::epsilon<double>() * 5) * 150;
   //
   // At float precision we need to up the tolerance, since
   // the input values are rounded off to inexact quantities
   // the results get thrown off by a noticeable amount.
   //
   if(boost::math::tools::digits<RealType>() < 50)
      tolerance *= 50;
   if(boost::is_floating_point<RealType>::value != 1)
      tolerance *= 20; // real_concept special functions are less accurate

   std::cout << "Tolerance = " << tolerance << "%." << std::endl;

   using boost::math::chi_squared_distribution;
   using  ::boost::math::chi_squared;
   using  ::boost::math::cdf;
   using  ::boost::math::pdf;
   //
   // Test against the data from Table 6 of:
   //
   // "Self-Validating Computations of Probabilities for Selected
   // Central and Noncentral Univariate Probability Functions."
   // Morgan C. Wang; William J. Kennedy
   // Journal of the American Statistical Association,
   // Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
   //
   test_spot(
      static_cast<RealType>(1),   // degrees of freedom
      static_cast<RealType>(6),   // non centrality
      static_cast<RealType>(0.00393),   // Chi Squared statistic
      static_cast<RealType>(0.2498463724258039e-2),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.2498463724258039e-2),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(5),   // degrees of freedom
      static_cast<RealType>(1),   // non centrality
      static_cast<RealType>(9.23636),   // Chi Squared statistic
      static_cast<RealType>(0.8272918751175548),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.8272918751175548),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(11),   // degrees of freedom
      static_cast<RealType>(21),   // non centrality
      static_cast<RealType>(24.72497),   // Chi Squared statistic
      static_cast<RealType>(0.2539481822183126),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.2539481822183126),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(31),   // degrees of freedom
      static_cast<RealType>(6),   // non centrality
      static_cast<RealType>(44.98534),   // Chi Squared statistic
      static_cast<RealType>(0.8125198785064969),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.8125198785064969),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(51),   // degrees of freedom
      static_cast<RealType>(1),   // non centrality
      static_cast<RealType>(38.56038),   // Chi Squared statistic
      static_cast<RealType>(0.8519497361859118e-1),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.8519497361859118e-1),           // Q = 1 - P
      tolerance * 2);
   test_spot(
      static_cast<RealType>(100),   // degrees of freedom
      static_cast<RealType>(16),   // non centrality
      static_cast<RealType>(82.35814),   // Chi Squared statistic
      static_cast<RealType>(0.1184348822747824e-1),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.1184348822747824e-1),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(300),   // degrees of freedom
      static_cast<RealType>(16),   // non centrality
      static_cast<RealType>(331.78852),   // Chi Squared statistic
      static_cast<RealType>(0.7355956710306709),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.7355956710306709),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(500),   // degrees of freedom
      static_cast<RealType>(21),   // non centrality
      static_cast<RealType>(459.92612),   // Chi Squared statistic
      static_cast<RealType>(0.2797023600800060e-1),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.2797023600800060e-1),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(1),   // degrees of freedom
      static_cast<RealType>(1),   // non centrality
      static_cast<RealType>(0.00016),   // Chi Squared statistic
      static_cast<RealType>(0.6121428929881423e-2),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.6121428929881423e-2),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(1),   // degrees of freedom
      static_cast<RealType>(1),   // non centrality
      static_cast<RealType>(0.00393),   // Chi Squared statistic
      static_cast<RealType>(0.3033814229753780e-1),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.3033814229753780e-1),           // Q = 1 - P
      tolerance);

   RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
   boost::math::non_central_chi_squared_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
   RealType x = 7;
   using namespace std; // ADL of std names.
   // mean:
   BOOST_CHECK_CLOSE(
      mean(dist)
      , static_cast<RealType>(8 + 12), tol2);
   // variance:
   BOOST_CHECK_CLOSE(
      variance(dist)
      , static_cast<RealType>(64), tol2);
   // std deviation:
   BOOST_CHECK_CLOSE(
      standard_deviation(dist)
      , static_cast<RealType>(8), tol2);
   // hazard:
   BOOST_CHECK_CLOSE(
      hazard(dist, x)
      , pdf(dist, x) / cdf(complement(dist, x)), tol2);
   // cumulative hazard:
   BOOST_CHECK_CLOSE(
      chf(dist, x)
      , -log(cdf(complement(dist, x))), tol2);
   // coefficient_of_variation:
   BOOST_CHECK_CLOSE(
      coefficient_of_variation(dist)
      , standard_deviation(dist) / mean(dist), tol2);
   // mode:
   BOOST_CHECK_CLOSE(
      mode(dist)
      , static_cast<RealType>(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500));
   BOOST_CHECK_CLOSE(
      median(dist),
      quantile(
      boost::math::non_central_chi_squared_distribution<RealType>(
      static_cast<RealType>(8),
      static_cast<RealType>(12)),
      static_cast<RealType>(0.5)), static_cast<RealType>(tol2));
   // skewness:
   BOOST_CHECK_CLOSE(
      skewness(dist)
      , static_cast<RealType>(0.6875), tol2);
   // kurtosis:
   BOOST_CHECK_CLOSE(
      kurtosis(dist)
      , static_cast<RealType>(3.65625), tol2);
   // kurtosis excess:
   BOOST_CHECK_CLOSE(
      kurtosis_excess(dist)
      , static_cast<RealType>(0.65625), tol2);

   // Error handling checks:
   check_out_of_range<boost::math::non_central_chi_squared_distribution<RealType> >(1, 1);
   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(0, 1), 0), std::domain_error);
   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(-1, 1), 0), std::domain_error);
   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(1, -1), 0), std::domain_error);
   BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), -1), std::domain_error);
   BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), 2), std::domain_error);
   //
   // Some special error handling tests, if the non-centrality param is too large
   // then we have no evaluation method and should get a domain_error:
   //
   using std::ldexp;
   using distro1 = boost::math::non_central_chi_squared_distribution<RealType>;
   using distro2 = boost::math::non_central_chi_squared_distribution<RealType, boost::math::policies::policy<boost::math::policies::domain_error<boost::math::policies::ignore_error>>>;
   using de = std::domain_error;
   BOOST_MATH_CHECK_THROW(distro1(2, ldexp(RealType(1), 100)), de);
   if (std::numeric_limits<RealType>::has_quiet_NaN)
   {
      distro2 d2(2, ldexp(RealType(1), 100));
      BOOST_CHECK(boost::math::isnan(pdf(d2, 0.5)));
      BOOST_CHECK(boost::math::isnan(cdf(d2, 0.5)));
      BOOST_CHECK(boost::math::isnan(cdf(complement(d2, 0.5))));
   }
#endif
} // template <class RealType>void test_spots(RealType)

template <class T>
T nccs_cdf(T df, T nc, T x)
{
   return cdf(boost::math::non_central_chi_squared_distribution<T>(df, nc), x);
}

template <class T>
T nccs_ccdf(T df, T nc, T x)
{
   return cdf(complement(boost::math::non_central_chi_squared_distribution<T>(df, nc), x));
}

template <typename Real, typename T>
void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
{
   typedef Real                   value_type;

   std::cout << "Testing: " << test << std::endl;

#ifdef NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST
   value_type(*fp1)(value_type, value_type, value_type) = NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST;
#else
   value_type(*fp1)(value_type, value_type, value_type) = nccs_cdf;
#endif
   boost::math::tools::test_result<value_type> result;

#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST))
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(fp1, 0, 1, 2),
      extract_result<Real>(3));
   handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "non central chi squared CDF", test);
#endif
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST))
#ifdef NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST
   fp1 = NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST;
#else
   fp1 = nccs_ccdf;
#endif
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(fp1, 0, 1, 2),
      extract_result<Real>(4));
   handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "non central chi squared CDF complement", test);

   std::cout << std::endl;
#endif
}

template <typename Real, typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
#ifndef ERROR_REPORTING_MODE
   typedef Real                   value_type;

   //
   // Tests with type real_concept take rather too long to run, so
   // for now we'll disable them:
   //
   if(!boost::is_floating_point<value_type>::value)
      return;

   std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;

   //
   // These sanity checks test for a round trip accuracy of one half
   // of the bits in T, unless T is type float, in which case we check
   // for just one decimal digit.  The problem here is the sensitivity
   // of the functions, not their accuracy.  This test data was generated
   // for the forward functions, which means that when it is used as
   // the input to the inverses then it is necessarily inexact.  This rounding
   // of the input is what makes the data unsuitable for use as an accuracy check,
   // and also demonstrates that you can't in general round-trip these functions.
   // It is however a useful sanity check.
   //
   value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
   if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
      precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float

   for(unsigned i = 0; i < data.size(); ++i)
   {
      if(Real(data[i][3]) == 0)
      {
         BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
      }
      else if(data[i][3] < 0.9999f)
      {
         value_type p = quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
         value_type pt = data[i][2];
         BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
      }
      if(data[i][4] == 0)
      {
         BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
      }
      else if(data[i][4] < 0.9999f)
      {
         value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
         value_type pt = data[i][2];
         BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
      }
      if(boost::math::tools::digits<value_type>() > 50)
      {
         //
         // Sanity check mode, the accuracy of
         // the mode is at *best* the square root of the accuracy of the PDF:
         //
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
         try{
            value_type m = mode(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]));
            value_type p = pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m);
            BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i);
            BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i);
         }
         catch(const boost::math::evaluation_error&) {}
#endif
         //
         // Sanity check degrees-of-freedom finder, don't bother at float
         // precision though as there's not enough data in the probability
         // values to get back to the correct degrees of freedom or
         // non-centrality parameter:
         //
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
         try{
#endif
            if((data[i][3] < 0.99) && (data[i][3] != 0))
            {
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
                  data[i][0], precision, i);
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
                  data[i][1], precision, i);
            }
            if((data[i][4] < 0.99) && (data[i][4] != 0))
            {
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
                  data[i][0], precision, i);
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
                  data[i][1], precision, i);
            }
#if !defined(BOOST_NO_EXCEPTIONS) && !defined(BOOST_MATH_NO_EXCEPTIONS)
         }
         catch(const std::exception& e)
         {
            BOOST_ERROR(e.what());
         }
#endif
      }
   }
#endif
}

template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nccs.ipp"
   do_test_nc_chi_squared<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
   quantile_sanity_check<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");

#include "nccs_big.ipp"
   do_test_nc_chi_squared<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
   quantile_sanity_check<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
}