1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
// test_nc_t.cpp
// Copyright John Maddock 2008, 2012.
// Copyright Paul A. Bristow 2012.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp> // Need to include lib/math/test in path.
#ifdef _MSC_VER
#pragma warning (disable:4127 4512)
#endif
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
#include <boost/math/tools/test.hpp>
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/non_central_t.hpp> // for chi_squared_distribution.
#include <boost/math/distributions/normal.hpp> // for normal distribution (for comparison).
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // for test_main
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#include "test_nc_t.hpp"
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double|real_concept";
}
else
{
largest_type = "long double|real_concept";
}
#else
largest_type = "(long\\s+)?double|real_concept";
#endif
//
// Catch all cases come last:
//
if(std::numeric_limits<long double>::digits > 54)
{
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*large[^|]*", // test data group
"[^|]*", 2000000, 200000); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"double", // test type(s)
"[^|]*large[^|]*", // test data group
"[^|]*", 500, 100); // test function
}
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"real_concept", // test type(s)
"[^|]*", // test data group
"[^|]*", 300000, 100000); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*large[^|]*", // test data group
"[^|]*", 1500, 300); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*small[^|]*", // test data group
"[^|]*", 400, 100); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
".*Solaris.*", // platform
largest_type, // test type(s)
"[^|]*", // test data group
"[^|]*", 400, 100); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"double", // test type(s)
"[^|]*PDF", // test data group
"[^|]*", static_cast<std::uintmax_t>(1 / boost::math::tools::root_epsilon<double>()), static_cast<std::uintmax_t>(1 / boost::math::tools::root_epsilon<double>())); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"long double", // test type(s)
"[^|]*PDF", // test data group
"[^|]*", static_cast<std::uintmax_t>(1 / boost::math::tools::root_epsilon<long double>()), static_cast<std::uintmax_t>(1 / boost::math::tools::root_epsilon<long double>())); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*", // test data group
"[^|]*", 250, 50); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
BOOST_AUTO_TEST_CASE( test_main )
{
BOOST_MATH_CONTROL_FP;
// Basic sanity-check spot values.
expected_results();
// (Parameter value, arbitrarily zero, only communicates the floating point type).
#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#endif
#ifdef TEST_FLOAT
test_accuracy(0.0F, "float"); // Test float.
test_big_df(0.F); // float
#endif
#ifdef TEST_DOUBLE
test_accuracy(0.0, "double"); // Test double.
test_big_df(0.); // double
test_ignore_policy(0.0);
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_accuracy(0.0L, "long double"); // Test long double.
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#ifdef TEST_REAL_CONCEPT
test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept.
#endif
#endif
#endif
/* */
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_nc_t.exe"
Running 1 test case...
Tests run with Microsoft Visual C++ version 10.0, Dinkumware standard library version 520, Win32
Tolerance = 0.000596046%.
Tolerance = 5e-010%.
Tolerance = 5e-010%.
Tolerance = 1e-008%.
Testing: Non Central T
CDF<float> Max = 0 RMS Mean=0
CCDF<float> Max = 0 RMS Mean=0
Testing: float quantile sanity check, with tests Non Central T
Testing: Non Central T (small non-centrality)
CDF<float> Max = 0 RMS Mean=0
CCDF<float> Max = 0 RMS Mean=0
Testing: float quantile sanity check, with tests Non Central T (small non-centrality)
Testing: Non Central T (large parameters)
CDF<float> Max = 0 RMS Mean=0
CCDF<float> Max = 0 RMS Mean=0
Testing: float quantile sanity check, with tests Non Central T (large parameters)
Testing: Non Central T
CDF<double> Max = 137.7 RMS Mean=31.5
worst case at row: 181
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
CCDF<double> Max = 150.4 RMS Mean=32.32
worst case at row: 184
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
Testing: double quantile sanity check, with tests Non Central T
Testing: Non Central T (small non-centrality)
CDF<double> Max = 3.605 RMS Mean=1.031
worst case at row: 42
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
CCDF<double> Max = 5.207 RMS Mean=1.432
worst case at row: 38
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
Testing: double quantile sanity check, with tests Non Central T (small non-centrality)
Testing: Non Central T (large parameters)
CDF<double> Max = 286.4 RMS Mean=62.79
worst case at row: 24
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
CCDF<double> Max = 226.9 RMS Mean=50.41
worst case at row: 23
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
Testing: double quantile sanity check, with tests Non Central T (large parameters)
Testing: Non Central T
CDF<long double> Max = 137.7 RMS Mean=31.5
worst case at row: 181
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
CCDF<long double> Max = 150.4 RMS Mean=32.32
worst case at row: 184
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
Testing: long double quantile sanity check, with tests Non Central T
Testing: Non Central T (small non-centrality)
CDF<long double> Max = 3.605 RMS Mean=1.031
worst case at row: 42
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
CCDF<long double> Max = 5.207 RMS Mean=1.432
worst case at row: 38
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
Testing: long double quantile sanity check, with tests Non Central T (small non-centrality)
Testing: Non Central T (large parameters)
CDF<long double> Max = 286.4 RMS Mean=62.79
worst case at row: 24
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
CCDF<long double> Max = 226.9 RMS Mean=50.41
worst case at row: 23
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
Testing: long double quantile sanity check, with tests Non Central T (large parameters)
Testing: Non Central T
CDF<real_concept> Max = 2.816e+005 RMS Mean=2.029e+004
worst case at row: 185
{ 191.50137329101562, -957.5068359375, -1035.4078369140625, 0.072545502958829097, 0.92745449704117089 }
CCDF<real_concept> Max = 1.304e+005 RMS Mean=1.529e+004
worst case at row: 184
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
cdf(n10, 11) = 0.84134471416473389 0.15865525603294373
cdf(n10, 9) = 0.15865525603294373 0.84134471416473389
cdf(maxdf10, 11) = 0.84134477376937866 0.15865525603294373
cdf(infdf10, 11) = 0.84134477376937866 0.15865525603294373
cdf(n10, 11) = 0.84134474606854293 0.15865525393145707
cdf(n10, 9) = 0.15865525393145707 0.84134474606854293
cdf(maxdf10, 11) = 0.84134474606854293 0.15865525393145707
cdf(infdf10, 11) = 0.84134474606854293 0.15865525393145707
*** No errors detected
Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_nc_t.exe"
Running 1 test case...
Tests run with Microsoft Visual C++ version 10.0, Dinkumware standard library version 520, Win32
Tolerance = 0.000596046%.
Tolerance = 5e-010%.
Tolerance = 5e-010%.
Tolerance = 1e-008%.
Testing: Non Central T
CDF<float> Max = 0 RMS Mean=0
CCDF<float> Max = 0 RMS Mean=0
Testing: float quantile sanity check, with tests Non Central T
Testing: Non Central T (small non-centrality)
CDF<float> Max = 0 RMS Mean=0
CCDF<float> Max = 0 RMS Mean=0
Testing: float quantile sanity check, with tests Non Central T (small non-centrality)
Testing: Non Central T (large parameters)
CDF<float> Max = 0 RMS Mean=0
CCDF<float> Max = 0 RMS Mean=0
Testing: float quantile sanity check, with tests Non Central T (large parameters)
Testing: Non Central T
CDF<double> Max = 137.7 RMS Mean=31.5
worst case at row: 181
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
CCDF<double> Max = 150.4 RMS Mean=32.32
worst case at row: 184
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
Testing: double quantile sanity check, with tests Non Central T
Testing: Non Central T (small non-centrality)
CDF<double> Max = 3.605 RMS Mean=1.031
worst case at row: 42
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
CCDF<double> Max = 5.207 RMS Mean=1.432
worst case at row: 38
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
Testing: double quantile sanity check, with tests Non Central T (small non-centrality)
Testing: Non Central T (large parameters)
CDF<double> Max = 286.4 RMS Mean=62.79
worst case at row: 24
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
CCDF<double> Max = 226.9 RMS Mean=50.41
worst case at row: 23
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
Testing: double quantile sanity check, with tests Non Central T (large parameters)
Testing: Non Central T
CDF<long double> Max = 137.7 RMS Mean=31.5
worst case at row: 181
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
CCDF<long double> Max = 150.4 RMS Mean=32.32
worst case at row: 184
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
Testing: long double quantile sanity check, with tests Non Central T
Testing: Non Central T (small non-centrality)
CDF<long double> Max = 3.605 RMS Mean=1.031
worst case at row: 42
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
CCDF<long double> Max = 5.207 RMS Mean=1.432
worst case at row: 38
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
Testing: long double quantile sanity check, with tests Non Central T (small non-centrality)
Testing: Non Central T (large parameters)
CDF<long double> Max = 286.4 RMS Mean=62.79
worst case at row: 24
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
CCDF<long double> Max = 226.9 RMS Mean=50.41
worst case at row: 23
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
Testing: long double quantile sanity check, with tests Non Central T (large parameters)
Testing: Non Central T
CDF<real_concept> Max = 2.816e+005 RMS Mean=2.029e+004
worst case at row: 185
{ 191.50137329101562, -957.5068359375, -1035.4078369140625, 0.072545502958829097, 0.92745449704117089 }
CCDF<real_concept> Max = 1.304e+005 RMS Mean=1.529e+004
worst case at row: 184
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
*** No errors detected
*/
/*
Temporary stuff from student's t version.
// Calculate 1 / eps, the point where student's t should change to normal distribution.
RealType limit = 1 / boost::math::tools::epsilon<RealType>();
using namespace boost::math::policies;
typedef policy<digits10<17> > accurate_policy; // 17 = max_digits10 where available.
limit = 1 / policies::get_epsilon<RealType, accurate_policy>();
BOOST_CHECK_CLOSE_FRACTION(limit, static_cast<RealType>(1) / std::numeric_limits<RealType>::epsilon(), tolerance);
// Default policy to get full accuracy.
// std::cout << "Switch over to normal if df > " << limit << std::endl;
// float Switch over to normal if df > 8.38861e+006
// double Switch over to normal if df > 4.5036e+015
// Can't test real_concept - doesn't converge.
boost::math::normal_distribution<RealType> n01(0, 1); //
boost::math::normal_distribution<RealType> n10(10, 1); //
non_central_t_distribution<RealType> nct(boost::math::tools::max_value<RealType>(), 0); // Well over the switchover point,
non_central_t_distribution<RealType> nct2(limit /5, 0); // Just below the switchover point,
non_central_t_distribution<RealType> nct3(limit /100, 0); // Well below the switchover point,
non_central_t_distribution<RealType> nct4(limit, 10); // Well below the switchover point, and 10 non-centrality.
// PDF
BOOST_CHECK_CLOSE_FRACTION(pdf(nct, 0), pdf(n01, 0.), tolerance); // normal and non-central t should be nearly equal.
BOOST_CHECK_CLOSE_FRACTION(pdf(nct2, 0), pdf(n01, 0.), tolerance); // should be very close to normal.
BOOST_CHECK_CLOSE_FRACTION(pdf(nct3, 0), pdf(n01, 0.), tolerance * 10); // should be close to normal.
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct4, 10), pdf(n10, 0.), tolerance * 100); // should be fairly close to normal tolerance.
RealType delta = 10; // non-centrality.
RealType nu = static_cast<RealType>(limit); // df
boost::math::normal_distribution<RealType> nl(delta, 1); // Normal distribution that nct tends to for big df.
non_central_t_distribution<RealType> nct5(nu, delta); //
RealType x = delta;
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 10 ); // nu = 1e15
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 1000 ); // nu = 1e14
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 10000 ); // nu = 1e13
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 100000 ); // nu = 1e12
BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 5 ); // nu = 1/eps
// Increasing the non-centrality delta increases the difference too because increases asymmetry.
// For example, with non-centrality = 100, need tolerance * 500
// CDF
BOOST_CHECK_CLOSE_FRACTION(cdf(nct, 0), cdf(n01, 0.), tolerance); // should be exactly equal.
BOOST_CHECK_CLOSE_FRACTION(cdf(nct2, 0), cdf(n01, 0.), tolerance); // should be very close to normal.
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(n10, 11)), 1 - cdf(n10, 11), tolerance); //
// cdf(n10, 10) = 0.841345 0.158655
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(n10, 9)), 1 - cdf(n10, 9), tolerance); //
std::cout.precision(17);
std::cout << "cdf(n10, 11) = " << cdf(n10, 11) << ' ' << cdf(complement(n10, 11)) << endl;
std::cout << "cdf(n10, 9) = " << cdf(n10, 9) << ' ' << cdf(complement(n10, 9)) << endl;
std::cout << std::numeric_limits<double>::max_digits10 << std::endl;
std::cout.precision(17);
using boost::math::tools::max_value;
double eps = std::numeric_limits<double>::epsilon();
// Use policies so that if policy requests lower precision,
// then get the normal distribution approximation earlier.
//limit = static_cast<double>(1) / limit; // 1/eps
double delta = 1e2;
double df =
delta / (4 * eps);
std::cout << df << std::endl; // df = 1.125899906842624e+018
{
boost::math::non_central_t_distribution<double> dist(df, delta);
std::cout <<"mean " << mean(dist) << std::endl; // mean 1000
std::cout <<"variance " << variance(dist) << std::endl; // variance 1
std::cout <<"skewness " << skewness(dist) << std::endl; // skewness 8.8817841970012523e-010
std::cout <<"kurtosis_excess " << kurtosis_excess(dist) << std::endl; // kurtosis_excess 3.0001220703125
//1.125899906842624e+017
//mean 100
//variance 1
//skewness 8.8817841970012523e-012
//kurtosis_excess 3
}
*/
|