1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#endif
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/non_central_t.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "test_out_of_range.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
template <class RealType>
RealType naive_pdf(RealType, RealType, RealType)
{
}
template <class RealType>
RealType naive_mean(RealType v, RealType delta)
{
using boost::math::tgamma;
return delta * sqrt(v / 2) * tgamma((v - 1) / 2) / tgamma(v / 2);
}
float naive_mean(float v, float delta)
{
return (float)naive_mean((double)v, (double)delta);
}
template <class RealType>
RealType naive_variance(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType r = tgamma((v - 1) / 2) / tgamma(v / 2);
r *= r;
r *= -delta * delta * v / 2;
r += (1 + delta * delta) * v / (v - 2);
return r;
}
float naive_variance(float v, float delta)
{
return (float)naive_variance((double)v, (double)delta);
}
template <class RealType>
RealType naive_skewness(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
RealType r = delta * sqrt(v) * tgamma((v - 1) / 2)
* (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
- 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
r /= boost::math::constants::root_two<RealType>()
* pow(((1 + delta*delta) * v / (-2 + v) - delta*delta*v*tgr*tgr / 2), RealType(1.5f))
* tgamma(v / 2);
return r;
}
float naive_skewness(float v, float delta)
{
return (float)naive_skewness((double)v, (double)delta);
}
template <class RealType>
RealType naive_kurtosis_excess(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
RealType r = -delta * delta * v * tgr * tgr / 2;
r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2 + v))
- 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
/ ((-4 + v) * (-2 + v));
r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
return r - static_cast<RealType>(3);
}
float naive_kurtosis_excess(float v, float delta)
{
return (float)naive_kurtosis_excess((double)v, (double)delta);
}
template <class RealType>
void test_spot(
RealType df, // Degrees of freedom
RealType ncp, // non-centrality param
RealType t, // T statistic
RealType P, // CDF
RealType Q, // Complement of CDF
RealType tol) // Test tolerance
{
// An extra fudge factor for real_concept which has a less accurate tgamma:
RealType tolerance_tgamma_extra = std::numeric_limits<RealType>::is_specialized ? 1 : 5;
boost::math::non_central_t_distribution<RealType> dist(df, ncp);
BOOST_CHECK_CLOSE(
cdf(dist, t), P, tol);
#ifndef BOOST_NO_EXCEPTIONS
try{
BOOST_CHECK_CLOSE(
mean(dist), naive_mean(df, ncp), tol);
BOOST_CHECK_CLOSE(
variance(dist), naive_variance(df, ncp), tol);
BOOST_CHECK_CLOSE(
skewness(dist), naive_skewness(df, ncp), tol * 10 * tolerance_tgamma_extra);
BOOST_CHECK_CLOSE(
kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 350 * tolerance_tgamma_extra);
BOOST_CHECK_CLOSE(
kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra);
}
catch(const std::domain_error&)
{
}
#endif
/*
BOOST_CHECK_CLOSE(
pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
*/
if((P < 0.99) && (Q < 0.99))
{
//
// We can only check this if P is not too close to 1,
// so that we can guarantee Q is reasonably free of error:
//
BOOST_CHECK_CLOSE(
cdf(complement(dist, t)), Q, tol);
BOOST_CHECK_CLOSE(
quantile(dist, P), t, tol * 10);
BOOST_CHECK_CLOSE(
quantile(complement(dist, Q)), t, tol * 10);
/* Removed because can give more than one solution.
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(df, t, P), ncp, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
*/
}
}
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
using namespace std;
//
// Approx limit of test data is 12 digits expressed here as a percentage:
//
RealType tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
(RealType)5e-12f) * 100;
//
// At float precision we need to up the tolerance, since
// the input values are rounded off to inexact quantities
// the results get thrown off by a noticeable amount.
//
if(boost::math::tools::digits<RealType>() < 50)
tolerance *= 50;
if(boost::is_floating_point<RealType>::value != 1)
tolerance *= 20; // real_concept special functions are less accurate
cout << "Tolerance = " << tolerance << "%." << endl;
//
// Test data is taken from:
//
// Computing discrete mixtures of continuous
// distributions: noncentral chisquare, noncentral t
// and the distribution of the square of the sample
// multiple correlation coefficient.
// Denise Benton, K. Krishnamoorthy.
// Computational Statistics & Data Analysis 43 (2003) 249 - 267
//
test_spot(
static_cast<RealType>(3), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(2.34), // T
static_cast<RealType>(0.801888999613917), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.801888999613917), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(126), // degrees of freedom
static_cast<RealType>(-2), // non centrality
static_cast<RealType>(-4.33), // T
static_cast<RealType>(1.252846196792878e-2), // Probability of result (CDF), P
static_cast<RealType>(1 - 1.252846196792878e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(20), // degrees of freedom
static_cast<RealType>(23), // non centrality
static_cast<RealType>(23), // T
static_cast<RealType>(0.460134400391924), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.460134400391924), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(20), // degrees of freedom
static_cast<RealType>(33), // non centrality
static_cast<RealType>(34), // T
static_cast<RealType>(0.532008386378725), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.532008386378725), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(12), // degrees of freedom
static_cast<RealType>(38), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.495868184917805), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.495868184917805), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(12), // degrees of freedom
static_cast<RealType>(39), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.446304024668836), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.446304024668836), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(200), // degrees of freedom
static_cast<RealType>(38), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.666194209961795), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.666194209961795), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(200), // degrees of freedom
static_cast<RealType>(42), // non centrality
static_cast<RealType>(40), // T
static_cast<RealType>(0.179292265426085), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.179292265426085), // Q = 1 - P
tolerance);
// From https://svn.boost.org/trac/boost/ticket/10480.
// Test value from Mathematica N[CDF[NoncentralStudentTDistribution[2, 4], 5], 35]:
test_spot(
static_cast<RealType>(2), // degrees of freedom
static_cast<RealType>(4), // non centrality
static_cast<RealType>(5), // T
static_cast<RealType>(0.53202069866995310466912357978934321L), // Probability of result (CDF), P
static_cast<RealType>(1 - 0.53202069866995310466912357978934321L), // Q = 1 - P
tolerance);
/* This test fails
"Result of tgamma is too large to represent" at naive_mean check for max and infinity.
if (std::numeric_limits<RealType>::has_infinity)
{
test_spot(
//static_cast<RealType>(std::numeric_limits<RealType>::infinity()), // degrees of freedom
static_cast<RealType>((std::numeric_limits<RealType>::max)()), // degrees of freedom
static_cast<RealType>(10), // non centrality
static_cast<RealType>(11), // T
static_cast<RealType>(0.84134474606854293), // Probability of result (CDF), P
static_cast<RealType>(0.15865525393145707), // Q = 1 - P
tolerance);
}
*/
boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);
// Tests ultimately derived from https://github.com/scipy/scipy/issues/20693
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0), static_cast<RealType>(9.9467084610854116569233495190046171e-57L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), boost::math::tools::min_value<RealType>()), static_cast<RealType>(9.9467084610854116569233495190046171e-57L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), -boost::math::tools::min_value<RealType>()), static_cast<RealType>(9.9467084610854116569233495190046171e-57L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), -0.125), static_cast<RealType>(1.4095889399390926611629593059778035e-57L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), -1e-16), static_cast<RealType>(9.9467084610853952383141848485633491e-57L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), 1e-16), static_cast<RealType>(9.9467084610854280755325141894744198e-57L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0.125), static_cast<RealType>(8.7874127030564572234218759603362e-56L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0), static_cast<RealType>(6.3887544005380872812754825749176666e-58L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), boost::math::tools::min_value<RealType>()), static_cast<RealType>(6.3887544005380872812754825749176666e-58L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), -boost::math::tools::min_value<RealType>()), static_cast<RealType>(6.3887544005380872812754825749176666e-58L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), -0.125), static_cast<RealType>(1.0189377690928162394097857383628309e-58L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), -1e-16), static_cast<RealType>(6.3887544005380773345670214895144269e-58L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), 1e-16), static_cast<RealType>(6.3887544005380972279839436603373249e-58L), tolerance);
BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0.125), static_cast<RealType>(5.0299048839141484925784179651886214e-57L), tolerance);
// Error handling checks:
//check_out_of_range<boost::math::non_central_t_distribution<RealType> >(1, 1); // Fails one check because df for this distribution *can* be infinity.
BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(0, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(-1, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), 2), std::domain_error);
//
// Some special error handling tests, if the non-centrality param is too large
// then we have no evaluation method and should get a domain_error:
//
using std::ldexp;
using distro1 = boost::math::non_central_t_distribution<RealType>;
using distro2 = boost::math::non_central_t_distribution<RealType, boost::math::policies::policy<boost::math::policies::domain_error<boost::math::policies::ignore_error>>>;
using de = std::domain_error;
BOOST_MATH_CHECK_THROW(distro1(2, ldexp(RealType(1), 100)), de);
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
distro2 d2(2, ldexp(RealType(1), 100));
BOOST_CHECK(boost::math::isnan(pdf(d2, 0.5)));
BOOST_CHECK(boost::math::isnan(cdf(d2, 0.5)));
}
// Bug cases,
// https://github.com/scipy/scipy/issues/19348
//
{
distro1 d(8.0f, 8.5f);
BOOST_CHECK_CLOSE(pdf(d, -1), static_cast<RealType>(6.1747948083757028903541988987716621647020752431287e-20), 2e-5); // Can we do better on accuracy here?
}
} // template <class RealType>void test_spots(RealType)
template <class T>
T nct_cdf(T df, T nc, T x)
{
return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
}
template <class T>
T nct_pdf(T df, T nc, T x)
{
return pdf(boost::math::non_central_t_distribution<T>(df, nc), x);
}
template <class T>
T nct_ccdf(T df, T nc, T x)
{
return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
}
template <typename Real, typename T>
void do_test_nc_t(T& data, const char* type_name, const char* test)
{
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
#ifdef NC_T_CDF_FUNCTION_TO_TEST
value_type(*fp1)(value_type, value_type, value_type) = NC_T_CDF_FUNCTION_TO_TEST;
#else
value_type(*fp1)(value_type, value_type, value_type) = nct_cdf;
#endif
boost::math::tools::test_result<value_type> result;
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CDF_FUNCTION_TO_TEST))
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central t CDF", test);
#endif
#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CCDF_FUNCTION_TO_TEST))
#ifdef NC_T_CCDF_FUNCTION_TO_TEST
fp1 = NC_T_CCDF_FUNCTION_TO_TEST;
#else
fp1 = nct_ccdf;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2),
extract_result<Real>(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central t CDF complement", test);
std::cout << std::endl;
#endif
}
template <typename Real, typename T>
void do_test_nc_t_pdf(T& data, const char* type_name, const char* test)
{
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
value_type(*fp1)(value_type, value_type, value_type) = nct_pdf;
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0, 1, 2),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "non central t PDF", test);
std::cout << std::endl;
}
template <typename Real, typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
#ifndef ERROR_REPORTING_MODE
typedef Real value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
if(data[i][3] == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
}
else if(data[i][3] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, the accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
#ifndef BOOST_NO_EXCEPTIONS
try{
value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
value_type delta = (std::max)(fabs(m * sqrt(precision) * 50), sqrt(precision) * 50);
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m + delta) <= p, i);
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m - delta) <= p, i);
}
catch(const boost::math::evaluation_error&) {}
#endif
#if 0
//
// Sanity check degrees-of-freedom finder, don't bother at float
// precision though as there's not enough data in the probability
// values to get back to the correct degrees of freedom or
// non-centrality parameter:
//
try{
if((data[i][3] < 0.99) && (data[i][3] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
data[i][1], precision, i);
}
if((data[i][4] < 0.99) && (data[i][4] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
data[i][1], precision, i);
}
}
catch(const std::exception& e)
{
BOOST_ERROR(e.what());
}
#endif
}
}
#endif
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nct.ipp"
do_test_nc_t<T>(nct, type_name, "Non Central T");
quantile_sanity_check<T>(nct, type_name, "Non Central T");
if(std::numeric_limits<T>::is_specialized)
{
//
// Don't run these tests for real_concept: they take too long and don't converge
// without numeric_limits and lanczos support:
//
#include "nct_small_delta.ipp"
do_test_nc_t<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
quantile_sanity_check<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
#include "nct_asym.ipp"
do_test_nc_t<T>(nct_asym, type_name, "Non Central T (large parameters)");
quantile_sanity_check<T>(nct_asym, type_name, "Non Central T (large parameters)");
#include "nc_t_pdf_data.ipp"
do_test_nc_t_pdf<T>(nc_t_pdf_data, type_name, "Non Central T PDF");
}
}
template <class RealType>
void test_big_df(RealType)
{
using namespace boost::math;
if(typeid(RealType) != typeid(boost::math::concepts::real_concept))
{ // Ordinary floats only.
// Could also test if (std::numeric_limits<RealType>::is_specialized);
RealType tolerance = 10 * boost::math::tools::epsilon<RealType>(); // static_cast<RealType>(1e-14); //
std::cout.precision(17); // Note: need to reset after calling BOOST_CHECK_s
// due to buglet in Boost.test that fails to restore precision correctly.
// Test for large degrees of freedom when should be same as normal.
RealType inf =
(std::numeric_limits<RealType>::has_infinity) ?
std::numeric_limits<RealType>::infinity()
:
boost::math::tools::max_value<RealType>();
RealType nan = std::numeric_limits<RealType>::quiet_NaN();
// Tests for df = max_value and infinity.
RealType max_val = boost::math::tools::max_value<RealType>();
non_central_t_distribution<RealType> maxdf(max_val, 0);
BOOST_CHECK_EQUAL(maxdf.degrees_of_freedom(), max_val);
non_central_t_distribution<RealType> infdf(inf, 0);
BOOST_CHECK_EQUAL(infdf.degrees_of_freedom(), inf);
BOOST_CHECK_EQUAL(mean(infdf), 0);
BOOST_CHECK_EQUAL(mean(maxdf), 0);
BOOST_CHECK_EQUAL(variance(infdf), 1);
BOOST_CHECK_EQUAL(variance(maxdf), 1);
BOOST_CHECK_EQUAL(skewness(infdf), 0);
BOOST_CHECK_EQUAL(skewness(maxdf), 0);
BOOST_CHECK_EQUAL(kurtosis_excess(infdf), 1);
BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(maxdf), static_cast<RealType>(1), tolerance);
// Bad df examples.
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-inf, 0), std::domain_error);
BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(nan, 0), std::domain_error);
BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-nan, 0), std::domain_error);
#else
BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-inf, 0), std::domain_error);
BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(nan, 0), std::domain_error);
BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-nan, 0), std::domain_error);
#endif
// BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), static_cast<RealType>(0.3989422804014326779399460599343818684759L), tolerance);
BOOST_CHECK_CLOSE_FRACTION(pdf(maxdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cdf(infdf, 0), boost::math::constants::half<RealType>(), tolerance);
BOOST_CHECK_CLOSE_FRACTION(cdf(maxdf, 0), boost::math::constants::half<RealType>(), tolerance);
// non-centrality delta = 10
// Degrees of freedom = Max value and = infinity should be very close.
non_central_t_distribution<RealType> maxdf10(max_val, 10);
non_central_t_distribution<RealType> infdf10(inf, 10);
BOOST_CHECK_EQUAL(infdf10.degrees_of_freedom(), inf);
BOOST_CHECK_EQUAL(infdf10.non_centrality(), 10);
BOOST_CHECK_EQUAL(mean(infdf10), 10);
BOOST_CHECK_CLOSE_FRACTION(mean(maxdf10), static_cast<RealType>(10), tolerance);
BOOST_CHECK_CLOSE_FRACTION(pdf(infdf10, 11), pdf(maxdf10, 11), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(infdf10, 11), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(maxdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
std::cout.precision(17);
//std::cout << "cdf(maxdf10, 11) = " << cdf(maxdf10, 11) << ' ' << cdf(complement(maxdf10, 11)) << endl;
//std::cout << "cdf(infdf10, 11) = " << cdf(infdf10, 11) << ' ' << cdf(complement(infdf10, 11)) << endl;
//std::cout << "quantile(maxdf10, 0.5) = " << quantile(maxdf10, 0.5) << std::endl; // quantile(maxdf10, 0.5) = 10.000000000000004
//std::cout << "quantile(infdf10, 0.5) = " << ' ' << quantile(infdf10, 0.5) << std::endl; // quantile(infdf10, 0.5) = 10
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), static_cast<RealType>(10), tolerance);
BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.5), static_cast<RealType>(10), tolerance);
BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> infdf100(inf, 100);");
non_central_t_distribution<RealType> infdf100(inf, 100);
BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> maxdf100(max_val, 100);");
non_central_t_distribution<RealType> maxdf100(max_val, 100);
BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);");
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);
BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);");
BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);
{ // Loop back.
RealType p = static_cast<RealType>(0.01);
RealType x = quantile(infdf10, p);
RealType c = cdf(infdf10, x);
BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
}
{
RealType q = static_cast<RealType>(0.99);
RealType x = quantile(complement(infdf10, q));
RealType c = cdf(complement(infdf10, x));
BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance);
}
{ // Loop back.
RealType p = static_cast<RealType>(0.99);
RealType x = quantile(infdf10, p);
RealType c = cdf(infdf10, x);
BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
}
{
RealType q = static_cast<RealType>(0.01);
RealType x = quantile(complement(infdf10, q));
RealType c = cdf(complement(infdf10, x));
BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance * 2); // c{0.0100000128} and q{0.00999999978}
}
//RealType cinf = quantile(infdf10, 0.25);
//std::cout << cinf << ' ' << cdf(infdf10, cinf) << std::endl; // 9.32551 0.25
//RealType cmax = quantile(maxdf10, 0.25);
//std::cout << cmax << ' ' << cdf(maxdf10, cmax) << std::endl; // 9.32551 0.25
//RealType cinfc = quantile(complement(infdf10, 0.75));
//std::cout << cinfc << ' ' << cdf(infdf10, cinfc) << std::endl; // 9.32551 0.25
//RealType cmaxc = quantile(complement(maxdf10, 0.75));
//std::cout << cmaxc << ' ' << cdf(maxdf10, cmaxc) << std::endl; // 9.32551 0.25
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), quantile(maxdf10, 0.5), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.2), quantile(maxdf10, 0.2), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.8), quantile(maxdf10, 0.8), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.25), quantile(complement(infdf10, 0.75)), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(infdf10, 0.5)), quantile(complement(maxdf10, 0.5)), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.25), quantile(complement(maxdf10, 0.75)), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.99), quantile(complement(infdf10, 0.01)), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.4), quantile(complement(infdf10, 0.6)), tolerance); //
BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.01), quantile(complement(infdf10, 1 - 0.01)), tolerance); //
}
} // void test_big_df(RealType)
template <class RealType>
void test_ignore_policy(RealType)
{
// Check on returns when errors are ignored.
if((typeid(RealType) != typeid(boost::math::concepts::real_concept))
&& std::numeric_limits<RealType>::has_infinity
&& std::numeric_limits<RealType>::has_quiet_NaN
)
{ // Ordinary floats only.
using namespace boost::math;
// RealType inf = std::numeric_limits<RealType>::infinity();
RealType nan = std::numeric_limits<RealType>::quiet_NaN();
using boost::math::policies::policy;
// Types of error whose action can be altered by policies:.
//using boost::math::policies::evaluation_error;
//using boost::math::policies::domain_error;
//using boost::math::policies::overflow_error;
//using boost::math::policies::underflow_error;
//using boost::math::policies::domain_error;
//using boost::math::policies::pole_error;
//// Actions on error (in enum error_policy_type):
//using boost::math::policies::errno_on_error;
//using boost::math::policies::ignore_error;
//using boost::math::policies::throw_on_error;
//using boost::math::policies::denorm_error;
//using boost::math::policies::pole_error;
//using boost::math::policies::user_error;
typedef policy<
boost::math::policies::domain_error<boost::math::policies::ignore_error>,
boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
boost::math::policies::pole_error<boost::math::policies::ignore_error>,
boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
> ignore_all_policy;
typedef non_central_t_distribution<RealType, ignore_all_policy> ignore_error_non_central_t;
// Only test NaN and infinity if type has these features (realconcept returns zero).
// Integers are always converted to RealType,
// others requires static cast to RealType from long double.
if(std::numeric_limits<RealType>::has_quiet_NaN)
{
// Mean
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-nan, 0))));
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(+nan, 0))));
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-1, 0))));
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(0, 0))));
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(1, 0))));
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(2, nan))));
BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(nan, nan))));
BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(2, 0)))); // OK
// Variance
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(nan, 0))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, nan))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, nan))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(-1, 0))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(0, 0))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, 0))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(static_cast<RealType>(1.7L), 0))));
BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, 0))));
// Skewness
BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(-1, 0))));
BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(0, 0))));
BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(1, 0))));
BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(2, 0))));
BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(3, 0))));
// Kurtosis
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(-1, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(0, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(1, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(2, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(3, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(4, 0))));
// Kurtosis excess
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(-1, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(0, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(1, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(2, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(3, 0))));
BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(4, 0))));
} // has_quiet_NaN
BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(1 + std::numeric_limits<RealType>::epsilon(), 0))));
BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
BOOST_CHECK(boost::math::isfinite(skewness(ignore_error_non_central_t(3 + 3 * std::numeric_limits<RealType>::epsilon(), 0))));
BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(4 + 4 * std::numeric_limits<RealType>::epsilon(), 0))));
BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(static_cast<RealType>(4.0001L), 0))));
// check_out_of_range<non_central_t_distribution<RealType> >(1, 0); // Fails one check because allows df = infinity.
check_support<non_central_t_distribution<RealType> >(non_central_t_distribution<RealType>(1, 0));
} // ordinary floats.
} // template <class RealType> void test_ignore_policy(RealType)
|