File: test_nc_t.hpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (804 lines) | stat: -rw-r--r-- 39,414 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
//  (C) Copyright John Maddock 2007.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#endif

#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/non_central_t.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "test_out_of_range.hpp"

#include "handle_test_result.hpp"
#include "table_type.hpp"

#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
      {\
      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
      BOOST_CHECK_CLOSE(a, b, prec); \
      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
            {\
         std::cerr << "Failure was at row " << i << std::endl;\
         std::cerr << std::setprecision(35); \
         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
            }\
      }

#define BOOST_CHECK_EX(a, i) \
      {\
      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
      BOOST_CHECK(a); \
      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
            {\
         std::cerr << "Failure was at row " << i << std::endl;\
         std::cerr << std::setprecision(35); \
         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
            }\
      }

template <class RealType>
RealType naive_pdf(RealType, RealType, RealType)
{
}

template <class RealType>
RealType naive_mean(RealType v, RealType delta)
{
   using boost::math::tgamma;
   return delta * sqrt(v / 2) * tgamma((v - 1) / 2) / tgamma(v / 2);
}

float naive_mean(float v, float delta)
{
   return (float)naive_mean((double)v, (double)delta);
}

template <class RealType>
RealType naive_variance(RealType v, RealType delta)
{
   using boost::math::tgamma;
   RealType r = tgamma((v - 1) / 2) / tgamma(v / 2);
   r *= r;
   r *= -delta * delta * v / 2;
   r += (1 + delta * delta) * v / (v - 2);
   return r;
}

float naive_variance(float v, float delta)
{
   return (float)naive_variance((double)v, (double)delta);
}

template <class RealType>
RealType naive_skewness(RealType v, RealType delta)
{
   using boost::math::tgamma;
   RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
   RealType r = delta * sqrt(v) * tgamma((v - 1) / 2)
      * (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
      - 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
   r /= boost::math::constants::root_two<RealType>()
      * pow(((1 + delta*delta) * v / (-2 + v) - delta*delta*v*tgr*tgr / 2), RealType(1.5f))
      * tgamma(v / 2);
   return r;
}

float naive_skewness(float v, float delta)
{
   return (float)naive_skewness((double)v, (double)delta);
}

template <class RealType>
RealType naive_kurtosis_excess(RealType v, RealType delta)
{
   using boost::math::tgamma;
   RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
   RealType r = -delta * delta * v * tgr * tgr / 2;
   r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2 + v))
      - 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
   r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
      / ((-4 + v) * (-2 + v));
   r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
   r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
   return r - static_cast<RealType>(3);
}

float naive_kurtosis_excess(float v, float delta)
{
   return (float)naive_kurtosis_excess((double)v, (double)delta);
}

template <class RealType>
void test_spot(
   RealType df,    // Degrees of freedom
   RealType ncp,   // non-centrality param
   RealType t,     // T statistic
   RealType P,     // CDF
   RealType Q,     // Complement of CDF
   RealType tol)   // Test tolerance
{
   // An extra fudge factor for real_concept which has a less accurate tgamma:
   RealType tolerance_tgamma_extra = std::numeric_limits<RealType>::is_specialized ? 1 : 5;

   boost::math::non_central_t_distribution<RealType> dist(df, ncp);
   BOOST_CHECK_CLOSE(
      cdf(dist, t), P, tol);
#ifndef BOOST_NO_EXCEPTIONS
   try{
      BOOST_CHECK_CLOSE(
         mean(dist), naive_mean(df, ncp), tol);
      BOOST_CHECK_CLOSE(
         variance(dist), naive_variance(df, ncp), tol);
      BOOST_CHECK_CLOSE(
         skewness(dist), naive_skewness(df, ncp), tol * 10 * tolerance_tgamma_extra);
      BOOST_CHECK_CLOSE(
         kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 350 * tolerance_tgamma_extra);
      BOOST_CHECK_CLOSE(
         kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra);
   }
   catch(const std::domain_error&)
   {
   }
#endif
   /*
   BOOST_CHECK_CLOSE(
   pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
   */
   if((P < 0.99) && (Q < 0.99))
   {
      //
      // We can only check this if P is not too close to 1,
      // so that we can guarantee Q is reasonably free of error:
      //
      BOOST_CHECK_CLOSE(
         cdf(complement(dist, t)), Q, tol);
      BOOST_CHECK_CLOSE(
         quantile(dist, P), t, tol * 10);
      BOOST_CHECK_CLOSE(
         quantile(complement(dist, Q)), t, tol * 10);
      /*  Removed because can give more than one solution.
      BOOST_CHECK_CLOSE(
      dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
      BOOST_CHECK_CLOSE(
      dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
      BOOST_CHECK_CLOSE(
      dist.find_non_centrality(df, t, P), ncp, tol * 10);
      BOOST_CHECK_CLOSE(
      dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
      */
   }
}

template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
   using namespace std;
   //
   // Approx limit of test data is 12 digits expressed here as a percentage:
   //
   RealType tolerance = (std::max)(
      boost::math::tools::epsilon<RealType>(),
      (RealType)5e-12f) * 100;
   //
   // At float precision we need to up the tolerance, since
   // the input values are rounded off to inexact quantities
   // the results get thrown off by a noticeable amount.
   //
   if(boost::math::tools::digits<RealType>() < 50)
      tolerance *= 50;
   if(boost::is_floating_point<RealType>::value != 1)
      tolerance *= 20; // real_concept special functions are less accurate

   cout << "Tolerance = " << tolerance << "%." << endl;

   //
   // Test data is taken from:
   //
   // Computing discrete mixtures of continuous
   // distributions: noncentral chisquare, noncentral t
   // and the distribution of the square of the sample
   // multiple correlation coefficient.
   // Denise Benton, K. Krishnamoorthy.
   // Computational Statistics & Data Analysis 43 (2003) 249 - 267
   //
   test_spot(
      static_cast<RealType>(3),   // degrees of freedom
      static_cast<RealType>(1),   // non centrality
      static_cast<RealType>(2.34),   // T
      static_cast<RealType>(0.801888999613917),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.801888999613917),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(126),   // degrees of freedom
      static_cast<RealType>(-2),   // non centrality
      static_cast<RealType>(-4.33),   // T
      static_cast<RealType>(1.252846196792878e-2),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 1.252846196792878e-2),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(20),   // degrees of freedom
      static_cast<RealType>(23),   // non centrality
      static_cast<RealType>(23),   // T
      static_cast<RealType>(0.460134400391924),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.460134400391924),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(20),   // degrees of freedom
      static_cast<RealType>(33),   // non centrality
      static_cast<RealType>(34),   // T
      static_cast<RealType>(0.532008386378725),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.532008386378725),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(12),   // degrees of freedom
      static_cast<RealType>(38),   // non centrality
      static_cast<RealType>(39),   // T
      static_cast<RealType>(0.495868184917805),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.495868184917805),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(12),   // degrees of freedom
      static_cast<RealType>(39),   // non centrality
      static_cast<RealType>(39),   // T
      static_cast<RealType>(0.446304024668836),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.446304024668836),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(200),   // degrees of freedom
      static_cast<RealType>(38),   // non centrality
      static_cast<RealType>(39),   // T
      static_cast<RealType>(0.666194209961795),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.666194209961795),           // Q = 1 - P
      tolerance);
   test_spot(
      static_cast<RealType>(200),   // degrees of freedom
      static_cast<RealType>(42),   // non centrality
      static_cast<RealType>(40),   // T
      static_cast<RealType>(0.179292265426085),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.179292265426085),           // Q = 1 - P
      tolerance);

   // From https://svn.boost.org/trac/boost/ticket/10480.
   // Test value from Mathematica N[CDF[NoncentralStudentTDistribution[2, 4], 5], 35]:
   test_spot(
      static_cast<RealType>(2),   // degrees of freedom
      static_cast<RealType>(4),   // non centrality
      static_cast<RealType>(5),   // T
      static_cast<RealType>(0.53202069866995310466912357978934321L),       // Probability of result (CDF), P
      static_cast<RealType>(1 - 0.53202069866995310466912357978934321L),           // Q = 1 - P
      tolerance);

   /* This test fails
   "Result of tgamma is too large to represent" at naive_mean check for max and infinity.
   if (std::numeric_limits<RealType>::has_infinity)
   {
   test_spot(
   //static_cast<RealType>(std::numeric_limits<RealType>::infinity()),   // degrees of freedom
   static_cast<RealType>((std::numeric_limits<RealType>::max)()),   // degrees of freedom
   static_cast<RealType>(10),   // non centrality
   static_cast<RealType>(11),   // T
   static_cast<RealType>(0.84134474606854293),       // Probability of result (CDF), P
   static_cast<RealType>(0.15865525393145707),           // Q = 1 - P
   tolerance);
   }
   */

   boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
   BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);

   // Tests ultimately derived from https://github.com/scipy/scipy/issues/20693
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0), static_cast<RealType>(9.9467084610854116569233495190046171e-57L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), boost::math::tools::min_value<RealType>()), static_cast<RealType>(9.9467084610854116569233495190046171e-57L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), -boost::math::tools::min_value<RealType>()), static_cast<RealType>(9.9467084610854116569233495190046171e-57L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), -0.125), static_cast<RealType>(1.4095889399390926611629593059778035e-57L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), -1e-16), static_cast<RealType>(9.9467084610853952383141848485633491e-57L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), 1e-16), static_cast<RealType>(9.9467084610854280755325141894744198e-57L), tolerance);
   BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0.125), static_cast<RealType>(8.7874127030564572234218759603362e-56L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0), static_cast<RealType>(6.3887544005380872812754825749176666e-58L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), boost::math::tools::min_value<RealType>()), static_cast<RealType>(6.3887544005380872812754825749176666e-58L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), -boost::math::tools::min_value<RealType>()), static_cast<RealType>(6.3887544005380872812754825749176666e-58L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), -0.125), static_cast<RealType>(1.0189377690928162394097857383628309e-58L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), -1e-16), static_cast<RealType>(6.3887544005380773345670214895144269e-58L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), 1e-16), static_cast<RealType>(6.3887544005380972279839436603373249e-58L), tolerance);
   BOOST_CHECK_CLOSE(cdf(boost::math::non_central_t_distribution<RealType>(8, 16), 0.125), static_cast<RealType>(5.0299048839141484925784179651886214e-57L), tolerance);

   // Error handling checks:
   //check_out_of_range<boost::math::non_central_t_distribution<RealType> >(1, 1);  // Fails one check because df for this distribution *can* be infinity.
   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(0, 1), 0), std::domain_error);
   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(-1, 1), 0), std::domain_error);
   BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), -1), std::domain_error);
   BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), 2), std::domain_error);
   //
   // Some special error handling tests, if the non-centrality param is too large
   // then we have no evaluation method and should get a domain_error:
   //
   using std::ldexp;
   using distro1 = boost::math::non_central_t_distribution<RealType>;
   using distro2 = boost::math::non_central_t_distribution<RealType, boost::math::policies::policy<boost::math::policies::domain_error<boost::math::policies::ignore_error>>>;
   using de = std::domain_error;
   BOOST_MATH_CHECK_THROW(distro1(2, ldexp(RealType(1), 100)), de);
   if (std::numeric_limits<RealType>::has_quiet_NaN)
   {
      distro2 d2(2, ldexp(RealType(1), 100));
      BOOST_CHECK(boost::math::isnan(pdf(d2, 0.5)));
      BOOST_CHECK(boost::math::isnan(cdf(d2, 0.5)));
   }

   // Bug cases, 
   // https://github.com/scipy/scipy/issues/19348
   //
   {
      distro1 d(8.0f, 8.5f);
      BOOST_CHECK_CLOSE(pdf(d, -1), static_cast<RealType>(6.1747948083757028903541988987716621647020752431287e-20), 2e-5);  // Can we do better on accuracy here?
   }

} // template <class RealType>void test_spots(RealType)

template <class T>
T nct_cdf(T df, T nc, T x)
{
   return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
}

template <class T>
T nct_pdf(T df, T nc, T x)
{
   return pdf(boost::math::non_central_t_distribution<T>(df, nc), x);
}

template <class T>
T nct_ccdf(T df, T nc, T x)
{
   return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
}

template <typename Real, typename T>
void do_test_nc_t(T& data, const char* type_name, const char* test)
{
   typedef Real                   value_type;

   std::cout << "Testing: " << test << std::endl;

#ifdef NC_T_CDF_FUNCTION_TO_TEST
   value_type(*fp1)(value_type, value_type, value_type) = NC_T_CDF_FUNCTION_TO_TEST;
#else
   value_type(*fp1)(value_type, value_type, value_type) = nct_cdf;
#endif
   boost::math::tools::test_result<value_type> result;

#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CDF_FUNCTION_TO_TEST))
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(fp1, 0, 1, 2),
      extract_result<Real>(3));
   handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "non central t CDF", test);
#endif

#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CCDF_FUNCTION_TO_TEST))
#ifdef NC_T_CCDF_FUNCTION_TO_TEST
   fp1 = NC_T_CCDF_FUNCTION_TO_TEST;
#else
   fp1 = nct_ccdf;
#endif
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(fp1, 0, 1, 2),
      extract_result<Real>(4));
   handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "non central t CDF complement", test);

   std::cout << std::endl;
#endif
}

template <typename Real, typename T>
void do_test_nc_t_pdf(T& data, const char* type_name, const char* test)
{
   typedef Real                   value_type;

   std::cout << "Testing: " << test << std::endl;

   value_type(*fp1)(value_type, value_type, value_type) = nct_pdf;

   boost::math::tools::test_result<value_type> result;

   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(fp1, 0, 1, 2),
      extract_result<Real>(3));
   handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "non central t PDF", test);

   std::cout << std::endl;
}

template <typename Real, typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
#ifndef ERROR_REPORTING_MODE
   typedef Real                   value_type;

   //
   // Tests with type real_concept take rather too long to run, so
   // for now we'll disable them:
   //
   if(!boost::is_floating_point<value_type>::value)
      return;

   std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;

   //
   // These sanity checks test for a round trip accuracy of one half
   // of the bits in T, unless T is type float, in which case we check
   // for just one decimal digit.  The problem here is the sensitivity
   // of the functions, not their accuracy.  This test data was generated
   // for the forward functions, which means that when it is used as
   // the input to the inverses then it is necessarily inexact.  This rounding
   // of the input is what makes the data unsuitable for use as an accuracy check,
   // and also demonstrates that you can't in general round-trip these functions.
   // It is however a useful sanity check.
   //
   value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
   if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
      precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float

   for(unsigned i = 0; i < data.size(); ++i)
   {
      if(data[i][3] == 0)
      {
         BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
      }
      else if(data[i][3] < 0.9999f)
      {
         value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
         value_type pt = data[i][2];
         BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
      }
      if(data[i][4] == 0)
      {
         BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
      }
      else if(data[i][4] < 0.9999f)
      {
         value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
         value_type pt = data[i][2];
         BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
      }
      if(boost::math::tools::digits<value_type>() > 50)
      {
         //
         // Sanity check mode, the accuracy of
         // the mode is at *best* the square root of the accuracy of the PDF:
         //
#ifndef BOOST_NO_EXCEPTIONS
         try{
            value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
            value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
            value_type delta = (std::max)(fabs(m * sqrt(precision) * 50), sqrt(precision) * 50);
            BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m + delta) <= p, i);
            BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m - delta) <= p, i);
         }
         catch(const boost::math::evaluation_error&) {}
#endif
#if 0
         //
         // Sanity check degrees-of-freedom finder, don't bother at float
         // precision though as there's not enough data in the probability
         // values to get back to the correct degrees of freedom or
         // non-centrality parameter:
         //
         try{
            if((data[i][3] < 0.99) && (data[i][3] != 0))
            {
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
                  data[i][0], precision, i);
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
                  data[i][1], precision, i);
            }
            if((data[i][4] < 0.99) && (data[i][4] != 0))
            {
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
                  data[i][0], precision, i);
               BOOST_CHECK_CLOSE_EX(
                  boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
                  data[i][1], precision, i);
            }
         }
         catch(const std::exception& e)
         {
            BOOST_ERROR(e.what());
         }
#endif
      }
   }
#endif
}

template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nct.ipp"
   do_test_nc_t<T>(nct, type_name, "Non Central T");
   quantile_sanity_check<T>(nct, type_name, "Non Central T");
   if(std::numeric_limits<T>::is_specialized)
   {
      //
      // Don't run these tests for real_concept: they take too long and don't converge
      // without numeric_limits and lanczos support:
      //
#include "nct_small_delta.ipp"
      do_test_nc_t<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
      quantile_sanity_check<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
#include "nct_asym.ipp"
      do_test_nc_t<T>(nct_asym, type_name, "Non Central T (large parameters)");
      quantile_sanity_check<T>(nct_asym, type_name, "Non Central T (large parameters)");

#include "nc_t_pdf_data.ipp"
      do_test_nc_t_pdf<T>(nc_t_pdf_data, type_name, "Non Central T PDF");
   }
}


template <class RealType>
void test_big_df(RealType)
{
   using namespace boost::math;

   if(typeid(RealType) != typeid(boost::math::concepts::real_concept))
   { // Ordinary floats only.
      // Could also test if (std::numeric_limits<RealType>::is_specialized);

      RealType tolerance = 10 * boost::math::tools::epsilon<RealType>(); // static_cast<RealType>(1e-14); //
      std::cout.precision(17); // Note: need to reset after calling BOOST_CHECK_s
      // due to buglet in Boost.test that fails to restore precision correctly.

      // Test for large degrees of freedom when should be same as normal.
      RealType inf =
         (std::numeric_limits<RealType>::has_infinity) ?
         std::numeric_limits<RealType>::infinity()
         :
         boost::math::tools::max_value<RealType>();
      RealType nan = std::numeric_limits<RealType>::quiet_NaN();

      // Tests for df = max_value and infinity.
      RealType max_val = boost::math::tools::max_value<RealType>();
      non_central_t_distribution<RealType> maxdf(max_val, 0);
      BOOST_CHECK_EQUAL(maxdf.degrees_of_freedom(), max_val);

      non_central_t_distribution<RealType> infdf(inf, 0);
      BOOST_CHECK_EQUAL(infdf.degrees_of_freedom(), inf);
      BOOST_CHECK_EQUAL(mean(infdf), 0);
      BOOST_CHECK_EQUAL(mean(maxdf), 0);
      BOOST_CHECK_EQUAL(variance(infdf), 1);
      BOOST_CHECK_EQUAL(variance(maxdf), 1);
      BOOST_CHECK_EQUAL(skewness(infdf), 0);
      BOOST_CHECK_EQUAL(skewness(maxdf), 0);
      BOOST_CHECK_EQUAL(kurtosis_excess(infdf), 1);
      BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(maxdf), static_cast<RealType>(1), tolerance);

      // Bad df examples.
#ifndef BOOST_NO_EXCEPTIONS
      BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-inf, 0), std::domain_error);
      BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(nan, 0), std::domain_error);
      BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-nan, 0), std::domain_error);
#else
      BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-inf, 0), std::domain_error);
      BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(nan, 0), std::domain_error);
      BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-nan, 0), std::domain_error);
#endif


      // BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), static_cast<RealType>(0.3989422804014326779399460599343818684759L), tolerance);
      BOOST_CHECK_CLOSE_FRACTION(pdf(maxdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
      BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
      BOOST_CHECK_CLOSE_FRACTION(cdf(infdf, 0), boost::math::constants::half<RealType>(), tolerance);
      BOOST_CHECK_CLOSE_FRACTION(cdf(maxdf, 0), boost::math::constants::half<RealType>(), tolerance);

      // non-centrality delta = 10
      // Degrees of freedom = Max value and  = infinity should be very close.
      non_central_t_distribution<RealType> maxdf10(max_val, 10);
      non_central_t_distribution<RealType> infdf10(inf, 10);
      BOOST_CHECK_EQUAL(infdf10.degrees_of_freedom(), inf);
      BOOST_CHECK_EQUAL(infdf10.non_centrality(), 10);
      BOOST_CHECK_EQUAL(mean(infdf10), 10);
      BOOST_CHECK_CLOSE_FRACTION(mean(maxdf10), static_cast<RealType>(10), tolerance);

      BOOST_CHECK_CLOSE_FRACTION(pdf(infdf10, 11), pdf(maxdf10, 11), tolerance); //

      BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(infdf10, 11), tolerance); //
      BOOST_CHECK_CLOSE_FRACTION(cdf(complement(maxdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
      BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
      std::cout.precision(17);
      //std::cout  << "cdf(maxdf10, 11)  = " << cdf(maxdf10, 11) << ' ' << cdf(complement(maxdf10, 11)) << endl;
      //std::cout  << "cdf(infdf10, 11)  = " << cdf(infdf10, 11) << ' ' << cdf(complement(infdf10, 11)) << endl;
      //std::cout  << "quantile(maxdf10, 0.5)  = " << quantile(maxdf10, 0.5) << std::endl; // quantile(maxdf10, 0.5)  = 10.000000000000004
      //std::cout  << "quantile(infdf10, 0.5) = " << ' ' << quantile(infdf10, 0.5) << std::endl; // quantile(infdf10, 0.5) =  10

      BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), static_cast<RealType>(10), tolerance);
      BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.5), static_cast<RealType>(10), tolerance);

      BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> infdf100(inf, 100);");
      non_central_t_distribution<RealType> infdf100(inf, 100);
      BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> maxdf100(max_val, 100);");
      non_central_t_distribution<RealType> maxdf100(max_val, 100);
      BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);");
      BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);
      BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);");
      BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);
      { // Loop back.
         RealType p = static_cast<RealType>(0.01);
         RealType x = quantile(infdf10, p);
         RealType c = cdf(infdf10, x);
         BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
      }
    {
       RealType q = static_cast<RealType>(0.99);
       RealType x = quantile(complement(infdf10, q));
       RealType c = cdf(complement(infdf10, x));
       BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance);
    }
    { // Loop back.
       RealType p = static_cast<RealType>(0.99);
       RealType x = quantile(infdf10, p);
       RealType c = cdf(infdf10, x);
       BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
    }
    {
       RealType q = static_cast<RealType>(0.01);
       RealType x = quantile(complement(infdf10, q));
       RealType c = cdf(complement(infdf10, x));
       BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance * 2); // c{0.0100000128} and q{0.00999999978}
    }

    //RealType cinf = quantile(infdf10, 0.25);
    //std::cout << cinf << ' ' << cdf(infdf10, cinf) << std::endl; // 9.32551 0.25

    //RealType cmax = quantile(maxdf10, 0.25);
    //std::cout << cmax << ' ' << cdf(maxdf10, cmax) << std::endl; //  9.32551 0.25

    //RealType cinfc = quantile(complement(infdf10, 0.75));
    //std::cout << cinfc << ' ' << cdf(infdf10, cinfc) << std::endl; // 9.32551 0.25

    //RealType cmaxc = quantile(complement(maxdf10, 0.75));
    //std::cout << cmaxc << ' ' << cdf(maxdf10, cmaxc) << std::endl; // 9.32551 0.25

    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), quantile(maxdf10, 0.5), tolerance); //
    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.2), quantile(maxdf10, 0.2), tolerance); //
    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.8), quantile(maxdf10, 0.8), tolerance); //

    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.25), quantile(complement(infdf10, 0.75)), tolerance); //
    BOOST_CHECK_CLOSE_FRACTION(quantile(complement(infdf10, 0.5)), quantile(complement(maxdf10, 0.5)), tolerance); //

    BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.25), quantile(complement(maxdf10, 0.75)), tolerance); //

    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.99), quantile(complement(infdf10, 0.01)), tolerance); //
    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.4), quantile(complement(infdf10, 0.6)), tolerance); //
    BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.01), quantile(complement(infdf10, 1 - 0.01)), tolerance); //
   }
} // void test_big_df(RealType)

template <class RealType>
void test_ignore_policy(RealType)
{
   // Check on returns when errors are ignored.
   if((typeid(RealType) != typeid(boost::math::concepts::real_concept))
      && std::numeric_limits<RealType>::has_infinity
      && std::numeric_limits<RealType>::has_quiet_NaN
      )
   { // Ordinary floats only.

      using namespace boost::math;
      //   RealType inf = std::numeric_limits<RealType>::infinity();
      RealType nan = std::numeric_limits<RealType>::quiet_NaN();

      using boost::math::policies::policy;
      // Types of error whose action can be altered by policies:.
      //using boost::math::policies::evaluation_error;
      //using boost::math::policies::domain_error;
      //using boost::math::policies::overflow_error;
      //using boost::math::policies::underflow_error;
      //using boost::math::policies::domain_error;
      //using boost::math::policies::pole_error;

      //// Actions on error (in enum error_policy_type):
      //using boost::math::policies::errno_on_error;
      //using boost::math::policies::ignore_error;
      //using boost::math::policies::throw_on_error;
      //using boost::math::policies::denorm_error;
      //using boost::math::policies::pole_error;
      //using boost::math::policies::user_error;

      typedef policy<
         boost::math::policies::domain_error<boost::math::policies::ignore_error>,
         boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
         boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
         boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
         boost::math::policies::pole_error<boost::math::policies::ignore_error>,
         boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
      > ignore_all_policy;

      typedef non_central_t_distribution<RealType, ignore_all_policy> ignore_error_non_central_t;

      // Only test NaN and infinity if type has these features (realconcept returns zero).
      // Integers are always converted to RealType,
      // others requires static cast to RealType from long double.

      if(std::numeric_limits<RealType>::has_quiet_NaN)
      {
         // Mean
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-nan, 0))));
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(+nan, 0))));
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-1, 0))));
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(0, 0))));
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(1, 0))));
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(2, nan))));
         BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(nan, nan))));
         BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(2, 0)))); // OK

         // Variance
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(nan, 0))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, nan))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, nan))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(-1, 0))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(0, 0))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, 0))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(static_cast<RealType>(1.7L), 0))));
         BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, 0))));

         // Skewness
         BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
         BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(-1, 0))));
         BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(0, 0))));
         BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(1, 0))));
         BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(2, 0))));
         BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(3, 0))));

         // Kurtosis
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(-1, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(0, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(1, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(2, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(3, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(4, 0))));

         // Kurtosis excess
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(-1, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(0, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(1, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(2, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(3, 0))));
         BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(4, 0))));
      } // has_quiet_NaN
      BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(1 + std::numeric_limits<RealType>::epsilon(), 0))));
      BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
      BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
      BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
      BOOST_CHECK(boost::math::isfinite(skewness(ignore_error_non_central_t(3 + 3 * std::numeric_limits<RealType>::epsilon(), 0))));
      BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(4 + 4 * std::numeric_limits<RealType>::epsilon(), 0))));
      BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(static_cast<RealType>(4.0001L), 0))));

      // check_out_of_range<non_central_t_distribution<RealType> >(1, 0); // Fails one check because allows df = infinity.
      check_support<non_central_t_distribution<RealType> >(non_central_t_distribution<RealType>(1, 0));
   } // ordinary floats.
} // template <class RealType> void test_ignore_policy(RealType)