1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
// (C) Copyright Nick Thompson, 2018
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MODULE numerical_differentiation_test
#include <cmath>
#include <limits>
#include <iostream>
#include <boost/type_index.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/bessel_prime.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/differentiation/finite_difference.hpp>
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using std::abs;
using std::pow;
using boost::math::differentiation::finite_difference_derivative;
using boost::math::differentiation::complex_step_derivative;
using boost::math::cyl_bessel_j;
using boost::math::cyl_bessel_j_prime;
using boost::math::constants::half;
template<class Real, size_t order>
void test_order(size_t points_to_test)
{
std::cout << "Testing order " << order << " derivative error estimate on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << std::fixed << std::scientific;
auto f = [](Real t) { return boost::math::cyl_bessel_j<Real>(1, t); };
Real min = Real(-100000.0);
Real max = -min;
Real x = min;
Real max_error = 0;
Real max_relative_error_in_error = 0;
size_t j = 0;
size_t failures = 0;
while (j < points_to_test)
{
x = min + (Real) 2*j*max/ (Real) points_to_test;
Real error_estimate;
Real computed = finite_difference_derivative<decltype(f), Real, order>(f, x, &error_estimate);
Real expected = (Real) cyl_bessel_j_prime<Real>(1, x);
Real error = abs(computed - expected);
// The error estimate is provided under the assumption that the function is evaluated to 1 ULP.
// Presumably no one will be too offended by this estimate being off by a factor of 2 or so.
if (error > 2*error_estimate)
{
++failures;
Real relative_error_in_error = abs(error - error_estimate)/ error;
if (relative_error_in_error > max_relative_error_in_error)
{
max_relative_error_in_error = relative_error_in_error;
}
if (relative_error_in_error > 2)
{
throw std::logic_error("Relative error in error is too high!");
}
}
if (error > max_error)
{
max_error = error;
}
++j;
}
//std::cout << "Maximum error :" << max_error << "\n";
//std::cout << "Error estimate failed " << failures << " times out of " << points_to_test << "\n";
//std::cout << "Failure rate: " << (double) failures / (double) points_to_test << "\n";
//std::cout << "Maximum error in estimated error = " << max_relative_error_in_error << "\n";
//Real convergence_rate = (Real) order/ (Real) (order + 1);
//std::cout << "eps^(order/order+1) = " << pow(std::numeric_limits<Real>::epsilon(), convergence_rate) << "\n\n\n";
bool max_error_good = max_error < 2*sqrt(std::numeric_limits<Real>::epsilon());
BOOST_TEST(max_error_good);
bool error_estimate_good = max_relative_error_in_error < (Real) 2;
BOOST_TEST(error_estimate_good);
double failure_rate = (double) failures / (double) points_to_test;
BOOST_CHECK_SMALL(failure_rate, 0.05);
}
template<class Real>
void test_bessel()
{
std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
Real eps = std::numeric_limits<Real>::epsilon();
Real x = static_cast<Real>(25.1);
auto f = [](Real t) { return boost::math::cyl_bessel_j(12, t); };
Real computed = finite_difference_derivative<decltype(f), Real, 1>(f, x);
Real expected = cyl_bessel_j_prime(12, x);
Real error_estimate = Real(4*abs(f(x))*sqrt(eps));
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "First order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 10*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 2>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, boost::math::constants::two_thirds<Real>());
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Second order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 50*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 4>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, (Real) 4 / (Real) 5);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Fourth order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 6>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, (Real) 6/ (Real) 7);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Sixth order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 100*error_estimate);
computed = finite_difference_derivative<decltype(f), Real, 8>(f, x);
expected = cyl_bessel_j_prime(12, x);
error_estimate = abs(f(x))*pow(eps, (Real) 8/ (Real) 9);
//std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
//std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
//std::cout << "Eighth order fd : " << computed << std::endl;
//std::cout << "Error : " << abs(computed - expected) << std::endl;
//std::cout << "a prior error est : " << error_estimate << std::endl;
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
}
// Example of a function which is subject to catastrophic cancellation using finite-differences, but is almost perfectly stable using complex step:
template<class RealOrComplex>
RealOrComplex moler_example(RealOrComplex x)
{
using std::sin;
using std::cos;
using std::exp;
RealOrComplex cosx = cos(x);
RealOrComplex sinx = sin(x);
return exp(x)/(cosx*cosx*cosx + sinx*sinx*sinx);
}
template<class RealOrComplex>
RealOrComplex moler_example_derivative(RealOrComplex x)
{
using std::sin;
using std::cos;
using std::exp;
RealOrComplex expx = exp(x);
RealOrComplex cosx = cos(x);
RealOrComplex sinx = sin(x);
RealOrComplex coscubed_sincubed = cosx*cosx*cosx + sinx*sinx*sinx;
return (expx/coscubed_sincubed)*(1 - 3*(sinx*sinx*cosx - sinx*cosx*cosx)/ (coscubed_sincubed));
}
template<class Real>
void test_complex_step()
{
using std::abs;
using std::complex;
using std::isfinite;
using std::isnormal;
std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
Real x = -100;
while ( x < 100 )
{
if (!isfinite(moler_example(x)))
{
x += 1;
continue;
}
Real expected = moler_example_derivative<Real>(x);
Real computed = complex_step_derivative(moler_example<complex<Real>>, x);
if (!isfinite(expected))
{
x += 1;
continue;
}
if (abs(expected) <= std::numeric_limits<Real>::epsilon())
{
bool issmall = computed < std::numeric_limits<Real>::epsilon();
BOOST_TEST(issmall);
}
else
{
BOOST_CHECK_CLOSE_FRACTION(expected, computed, 200*std::numeric_limits<Real>::epsilon());
}
x += 1;
}
}
BOOST_AUTO_TEST_CASE(numerical_differentiation_test)
{
constexpr size_t points_to_test = 1000;
#ifdef __STDCPP_FLOAT32_T__
test_complex_step<std::float32_t>();
test_bessel<std::float32_t>();
test_order<std::float32_t, 1>(points_to_test);
test_order<std::float32_t, 2>(points_to_test);
test_order<std::float32_t, 4>(points_to_test);
test_order<std::float32_t, 6>(points_to_test);
test_order<std::float32_t, 8>(points_to_test);
#else
test_complex_step<float>();
test_bessel<float>();
test_order<float, 1>(points_to_test);
test_order<float, 2>(points_to_test);
test_order<float, 4>(points_to_test);
test_order<float, 6>(points_to_test);
test_order<float, 8>(points_to_test);
#endif
#ifdef __STDCPP_FLOAT64_T__
test_complex_step<std::float64_t>();
test_bessel<std::float64_t>();
test_order<std::float64_t, 1>(points_to_test);
test_order<std::float64_t, 2>(points_to_test);
test_order<std::float64_t, 4>(points_to_test);
test_order<std::float64_t, 6>(points_to_test);
test_order<std::float64_t, 8>(points_to_test);
#else
test_complex_step<double>();
test_bessel<double>();
test_order<double, 1>(points_to_test);
test_order<double, 2>(points_to_test);
test_order<double, 4>(points_to_test);
test_order<double, 6>(points_to_test);
test_order<double, 8>(points_to_test);
#endif
}
|