1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
// Copyright Paul A. Bristow 2007, 2009.
// Copyright John Maddock 2006.
// Copyright Matt Borland 2023.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// test_pareto.cpp
// http://en.wikipedia.org/wiki/pareto_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "pareto Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/paretoDistribution.html
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
# pragma warning (disable : 4996) // POSIX name for this item is deprecated
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'arg' was previously defined as a type
# pragma warning (disable : 4180) // qualifier applied to function type has no meaning; ignored
# pragma warning(disable: 4100) // unreferenced formal parameter.
#endif
#include <boost/math/tools/config.hpp>
#include "../include_private/boost/math/tools/test.hpp"
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/pareto.hpp>
using boost::math::pareto_distribution;
#include "test_out_of_range.hpp"
#include <iostream>
using std::cout;
using std::endl;
using std::setprecision;
#include <limits>
using std::numeric_limits;
#include <type_traits>
template <class RealType>
void check_pareto(RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
{
RealType logtol = tol * 10;
#ifndef BOOST_MATH_HAS_GPU_SUPPORT
BOOST_IF_CONSTEXPR (std::is_same<RealType, long double>::value ||
std::is_same<RealType, boost::math::concepts::real_concept>::value)
{
logtol *= 100;
}
#endif
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
pareto_distribution<RealType>(scale, shape), // distribution.
x), // random variable.
p, // probability.
tol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
complement(
pareto_distribution<RealType>(scale, shape), // distribution.
x)), // random variable.
q, // probability complement.
tol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::logcdf(
pareto_distribution<RealType>(scale, shape), // distribution.
x), // random variable.
log(p), // probability.
logtol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::logcdf(
complement(
pareto_distribution<RealType>(scale, shape), // distribution.
x)), // random variable.
log(q), // probability complement.
logtol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
pareto_distribution<RealType>(scale, shape), // distribution.
p), // probability.
x, // random variable.
tol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
complement(
pareto_distribution<RealType>(scale, shape), // distribution.
q)), // probability complement.
x, // random variable.
tol); // tolerance eps.
} // check_pareto
template <class RealType>
void test_spots(RealType)
{
// Basic sanity checks.
//
// Tolerance are based on units of epsilon, but capped at
// double precision, since that's the limit of our test data:
//
RealType tol = (std::max)((RealType)boost::math::tools::epsilon<double>(), boost::math::tools::epsilon<RealType>());
RealType tol5eps = tol * 5;
RealType tol10eps = tol * 10;
RealType tol100eps = tol * 100;
RealType tol1000eps = tol * 1000;
check_pareto(
static_cast<RealType>(1.1L), //
static_cast<RealType>(5.5L),
static_cast<RealType>(2.2L),
static_cast<RealType>(0.97790291308792L),
static_cast<RealType>(0.0220970869120796L),
tol10eps * 4);
check_pareto(
static_cast<RealType>(0.5L),
static_cast<RealType>(10.1L),
static_cast<RealType>(1.5L),
static_cast<RealType>(0.99998482686481L),
static_cast<RealType>(1.51731351900608e-005L),
tol100eps * 1000); // Much less accurate as p close to unity.
check_pareto(
static_cast<RealType>(0.1L),
static_cast<RealType>(2.3L),
static_cast<RealType>(1.5L),
static_cast<RealType>(0.99802762220697L),
static_cast<RealType>(0.00197237779302972L),
tol1000eps);
// Example from 23.3 page 259
check_pareto(
static_cast<RealType>(2.30444301457005L),
static_cast<RealType>(4),
static_cast<RealType>(2.4L),
static_cast<RealType>(0.15L),
static_cast<RealType>(0.85L),
tol100eps);
check_pareto(
static_cast<RealType>(2),
static_cast<RealType>(3),
static_cast<RealType>(3.4L),
static_cast<RealType>(0.796458375737838L),
static_cast<RealType>(0.203541624262162L),
tol10eps);
check_pareto( // Probability near 0.5
static_cast<RealType>(2),
static_cast<RealType>(2),
static_cast<RealType>(3),
static_cast<RealType>(0.5555555555555555555555555555555555555556L),
static_cast<RealType>(0.4444444444444444444444444444444444444444L),
tol5eps); // accurate.
// Tests for:
// pdf for shapes 1, 2 & 3 (exact)
BOOST_CHECK_CLOSE_FRACTION(
pdf(pareto_distribution<RealType>(1, 1), 1),
static_cast<RealType>(1), //
tol5eps);
BOOST_CHECK_CLOSE_FRACTION( pdf(pareto_distribution<RealType>(1, 2), 1),
static_cast<RealType>(2), //
tol5eps);
BOOST_CHECK_CLOSE_FRACTION( pdf(pareto_distribution<RealType>(1, 3), 1),
static_cast<RealType>(3), //
tol5eps);
// cdf
BOOST_CHECK_EQUAL( // x = scale
cdf(pareto_distribution<RealType>(1, 1), 1),
static_cast<RealType>(0) );
// Compare with values from StatCalc K. Krishnamoorthy, ISBN 1-58488-635-8 eq 23.1.3
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4)),
static_cast<RealType>(0.929570372227626L), tol5eps);
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4)),
static_cast<RealType>(1 - 0.0704296277723743L), tol5eps);
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(complement(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4))),
static_cast<RealType>(0.0704296277723743L), tol5eps);
// quantile
BOOST_CHECK_EQUAL( // x = scale
quantile(pareto_distribution<RealType>(1, 1), 0),
static_cast<RealType>(1) );
BOOST_CHECK_EQUAL( // x = scale
quantile(complement(pareto_distribution<RealType>(1, 1), 1)),
static_cast<RealType>(1) );
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(complement(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4))),
static_cast<RealType>(0.0704296277723743L), tol5eps);
using namespace std; // ADL of std names.
pareto_distribution<RealType> pareto15(1, 5);
// Note: shape must be big enough (5) that all moments up to kurtosis are defined
// to allow all functions to be tested.
// mean:
BOOST_CHECK_CLOSE_FRACTION(
mean(pareto15), static_cast<RealType>(1.25), tol5eps); // 1.25 == 5/4
BOOST_CHECK_EQUAL(
mean(pareto15), static_cast<RealType>(1.25)); // 1.25 == 5/4 (expect exact so check equal)
pareto_distribution<RealType> p12(1, 2); //
BOOST_CHECK_EQUAL(
mean(p12), static_cast<RealType>(2)); // Exactly two.
// variance:
BOOST_CHECK_CLOSE_FRACTION(
variance(pareto15), static_cast<RealType>(0.10416666666666667L), tol5eps);
// std deviation:
BOOST_CHECK_CLOSE_FRACTION(
standard_deviation(pareto15), static_cast<RealType>(0.32274861218395140L), tol5eps);
// hazard: No independent test values found yet.
//BOOST_CHECK_CLOSE_FRACTION(
// hazard(pareto15, x), pdf(pareto15, x) / cdf(complement(pareto15, x)), tol5eps);
//// cumulative hazard:
//BOOST_CHECK_CLOSE_FRACTION(
// chf(pareto15, x), -log(cdf(complement(pareto15, x))), tol5eps);
//// coefficient_of_variation:
BOOST_CHECK_CLOSE_FRACTION(
coefficient_of_variation(pareto15), static_cast<RealType>(0.25819888974716110L), tol5eps);
// mode:
BOOST_CHECK_CLOSE_FRACTION(
mode(pareto15), static_cast<RealType>(1), tol5eps);
BOOST_CHECK_CLOSE_FRACTION(
median(pareto15), static_cast<RealType>(1.1486983549970351L), tol5eps);
// skewness:
BOOST_CHECK_CLOSE_FRACTION(
skewness(pareto15), static_cast<RealType>(4.6475800154489004L), tol5eps);
// kurtosis:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis(pareto15), static_cast<RealType>(73.8L), tol5eps);
// kurtosis excess:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis_excess(pareto15), static_cast<RealType>(70.8L), tol5eps);
// Check difference between kurtosis and excess:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis_excess(pareto15), kurtosis(pareto15) - static_cast<RealType>(3L), tol5eps);
// Check kurtosis excess = kurtosis - 3;
RealType expected_entropy = 1 + RealType(1)/RealType(5) + log(RealType(1)/RealType(5));
BOOST_CHECK_CLOSE_FRACTION(
entropy(pareto15), expected_entropy, tol5eps);
// Error condition checks:
check_out_of_range<pareto_distribution<RealType> >(1, 1);
BOOST_MATH_CHECK_THROW(pdf(pareto_distribution<RealType>(0, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(pareto_distribution<RealType>(1, 0), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(pareto_distribution<RealType>(-1, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(pareto_distribution<RealType>(1, -1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(pdf(pareto_distribution<RealType>(1, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(cdf(pareto_distribution<RealType>(1, 1), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(pareto_distribution<RealType>(1, 1), -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(pareto_distribution<RealType>(1, 1), 2), std::domain_error);
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
// Check that can generate pareto distribution using the two convenience methods:
boost::math::pareto myp1(1., 1); // Using typedef
pareto_distribution<> myp2(1., 1); // Using default RealType double.
boost::math::pareto pareto11; // Use default values (scale = 1, shape = 1).
// Note NOT pareto11() as the compiler will interpret as a function!
// Basic sanity-check spot values.
BOOST_CHECK_EQUAL(pareto11.scale(), 1); // Check defaults again.
BOOST_CHECK_EQUAL(pareto11.shape(), 1);
BOOST_CHECK_EQUAL(myp1.scale(), 1);
BOOST_CHECK_EQUAL(myp1.shape(), 1);
BOOST_CHECK_EQUAL(myp2.scale(), 1);
BOOST_CHECK_EQUAL(myp2.shape(), 1);
// Test range and support using double only,
// because it supports numeric_limits max for pseudo-infinity.
BOOST_CHECK_EQUAL(range(myp2).first, 0); // range 0 to +infinity
BOOST_CHECK_EQUAL(range(myp2).second, (numeric_limits<double>::max)());
BOOST_CHECK_EQUAL(support(myp2).first, myp2.scale()); // support scale to + infinity.
BOOST_CHECK_EQUAL(support(myp2).second, (numeric_limits<double>::max)());
// Check some bad parameters to the distribution.
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(boost::math::pareto mypm1(-1, 1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto myp0(0, 1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto myp1m1(1, -1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto myp10(1, 0), std::domain_error); // Using typedef
#else
BOOST_MATH_CHECK_THROW(boost::math::pareto(-1, 1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto(0, 1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto(1, -1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto(1, 0), std::domain_error); // Using typedef
#endif
// Check some moments that should fail because shape not big enough.
BOOST_MATH_CHECK_THROW(variance(myp2), std::domain_error);
BOOST_MATH_CHECK_THROW(standard_deviation(myp2), std::domain_error);
BOOST_MATH_CHECK_THROW(skewness(myp2), std::domain_error);
BOOST_MATH_CHECK_THROW(kurtosis(myp2), std::domain_error);
BOOST_MATH_CHECK_THROW(kurtosis_excess(myp2), std::domain_error);
// Test on extreme values of distribution parameters,
// using just double because it has numeric_limit infinity etc.
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), 1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto myp1inf(1, +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
#else
BOOST_MATH_CHECK_THROW(boost::math::pareto(+std::numeric_limits<double>::infinity(), 1), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto(1, +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
BOOST_MATH_CHECK_THROW(boost::math::pareto(+std::numeric_limits<double>::infinity(), +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
#endif
// Test on extreme values of random variate x, using just double because it has numeric_limit infinity etc..
// No longer allow x to be + or - infinity, then these tests should throw.
BOOST_MATH_CHECK_THROW(pdf(pareto11, +std::numeric_limits<double>::infinity()), std::domain_error); // x = + infinity
BOOST_MATH_CHECK_THROW(pdf(pareto11, -std::numeric_limits<double>::infinity()), std::domain_error); // x = - infinity
BOOST_MATH_CHECK_THROW(cdf(pareto11, +std::numeric_limits<double>::infinity()), std::domain_error); // x = + infinity
BOOST_MATH_CHECK_THROW(cdf(pareto11, -std::numeric_limits<double>::infinity()), std::domain_error); // x = - infinity
BOOST_CHECK_EQUAL(pdf(pareto11, 0.5), 0); // x < scale but > 0
BOOST_CHECK_EQUAL(pdf(pareto11, (std::numeric_limits<double>::min)()), 0); // x almost zero but > 0
BOOST_CHECK_EQUAL(pdf(pareto11, 1), 1); // x == scale, result == shape == 1
BOOST_CHECK_EQUAL(pdf(pareto11, +(std::numeric_limits<double>::max)()), 0); // x = +max, pdf has fallen to zero.
BOOST_MATH_CHECK_THROW(pdf(pareto11, 0), std::domain_error); // x == 0
BOOST_MATH_CHECK_THROW(pdf(pareto11, -1), std::domain_error); // x = -1
BOOST_MATH_CHECK_THROW(pdf(pareto11, -(std::numeric_limits<double>::max)()), std::domain_error); // x = - max
BOOST_MATH_CHECK_THROW(pdf(pareto11, -(std::numeric_limits<double>::min)()), std::domain_error); // x = - min
BOOST_CHECK_EQUAL(cdf(pareto11, 1), 0); // x == scale, cdf = zero.
BOOST_CHECK_EQUAL(cdf(pareto11, +(std::numeric_limits<double>::max)()), 1); // x = + max, cdf = unity.
BOOST_MATH_CHECK_THROW(cdf(pareto11, 0), std::domain_error); // x == 0
BOOST_MATH_CHECK_THROW(cdf(pareto11, -(std::numeric_limits<double>::min)()), std::domain_error); // x = - min,
BOOST_MATH_CHECK_THROW(cdf(pareto11, -(std::numeric_limits<double>::max)()), std::domain_error); // x = - max,
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tol5eps = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tol5eps = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x0582)) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
Compiling...
test_pareto.cpp
Linking...
Embedding manifest...
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_pareto.exe"
Running 1 test case...
*** No errors detected
*/
|